수학 칼럼(9)-로피탈 정리
게시글 주소: https://orbi.kr/00030600029
우선 로피탈 정리를 보겠습니다.
요약히면
입니다. 등식의 좌우를 바꿔보겠습니다.
분수꼴의 함수의 극한값을 분모,분자 각각 미분한 뒤 극한값을 쉽게 찾는 방법이 로피탈 정리라면 그 역 과정도 가능하다는 얘기가 되겠습니다. 로피탈 과정의 역과정이므로 역 로피탈의 방법이라 하겠습니다. (정리라고 하기에는... 공식 용어인지는 모르겠습니다.)
다음 문제를 보겠습니다.
함수의 극한의 가장 기본 문제가 아닐까 싶습니다.
풀이는 인수분해/약분 으로
이것을 로피탈로는
입니다. 이것을 역 방향 로피탈로 풀어보면 다음과 같습니다.
분수식의 각함수를 부정적분 하였으므로 적분 상수가 생기는 데 0/0 꼴 이 되기위한 적분 상수 C1, C2는 쉽게 결정할 수 있습니다.
왜 이렇게 풀지? 네 이렇게 안 풀어도 됩니다. 칼럼이니 참고사항정도로 생각해 주시면 감사하겠습니다.
lim sinx/x =1입니다. 같은 방법으로 로피탈, 역방향 순으로 적용해 보겠습니다.
0분의 0꼴 또는 무한 분의 무한 꼴만 되느냐?
그건 아닙니다. 다음과 같이 0곱하기 무한대 꼴에서도 적용해 보겠습니다.
물론 분수꼴로 고치면 0/0 꼴이 됩니다. 같은 거란 얘기죠...우선 풀이는 다음과 같습니다.
로피탈 정리를 이용하기 위해 분수꼴로 고치겠습니다.
역 방향 로피탈 방벙으로는 다음과 같이 더 복잡합니다.
적분 상수 C1, C2는 위에서도 언급했듯이 쉽게 구할 수 있습니다.
오히려 풀이 과정이 더 복잡한데 궅이 알 필요가 있을까?
역방향 로피탈 방법으로 풀 때 편리할 때가 있습니다.
분수꼴의 함수에 도함수(f'(x)) 가 포함되어 있거나 분수꼴로 변형했을 때 적분과정 간단한 함수들은 역방향으로 진행하는게 계산상 훨씬 간단합니다.
지금 부터 그런 문제에 대해 얘기해 보겠습니다.
위의 문제들에서 역방향 풀이를 보여야 다음 문제들의 풀이가 이해가 될거 같아 나름 노가다 해 보았습니다.
극한에 도함수가 포함되어 있습니다. 이런 경우는 역방향으로 가도 간단합니다.
위 풀이들 처럼 세 단계로 풀이를 올리겠습니다.
역시 로피탈 정리가 간단합니다.
그런데 역방향 이 그리 복잡하지 않습니다. 그래서 로피탈을 사용할거면 역방향까지 익히는게 사고력 확장에도 도움되리라 봅니다. 위의 풀이들 처럼 로피탈 정리를 이용해서 답만 구하는게 아니라 교육과정으로는 이렇게...로피탈로는 이렇게, 역방향으로는 이렇게...
그리고 역방향으로 진행했을 때 확실히 간단한 풀이가 되는 문항들이 있습니다. 문제들이 어려울수록..
다음 문제를 보겠습니다.
2018년도에 출시된 EBS 수능특강 미적분2 4단원 레벨3 문제입니다. 문제가 잘 안 보여서 타이핑 쳤습니다.
EBS에서 제공한 풀이는 길어서 생략하겠습니다, 직접 풀어보시면 더 좋겠습니다.
적분 상수를 구하는 방법, 풀이의 흐름 등은 이 글 위에서 부터 익혀왔으면 눈으로 볼 수 있는 풀이라 생각됩니다.
역방향 로피탈 방법이었습니다.
역로피탈 방법이 최적화된 풀이가 되는 문제가 있습니다. 바로
2018학년도 6월 모평 21번!!
바로 이 문항으로 인해 한 때 핫 했던 방법이라 생각됩니다. 평가원에서 다시 낼리는 없겠지만 학교 내신 에는 자주 등장하므로 현역들은 익혀두는 것이 좋다는 생각입니다. 이번 6월 모평 대비로 정현경 선생님과 제작한 어썸&랑데뷰 6평 대비 21번에도 그래서 변형 문항을 탑재해 뒀습니다. 이 칼럼과 매치 시키기 위해..
좀 더 빨리 칼럼을 썼어야 했는데..
다른 일로 바뻤기도 했지만 별 인기도 없는글이라 생각되어 크게 글을 쓰고 싶은 맘이 안 들더군요..
이번달이 가기 전에 2021 수능대비 어썸&랑데뷰 모의고사가 오르비에서 출판됩니다. 거기에 맞춰 칼럼을 써 보기로 맘먹었답니다. 10회까지는 제작하기로!!
잡언이 길었네요.
평가원은 풀이를 제시하지 않습니다. 이 문제에 대한 풀이는 당시 엄청 길었습니다.(EBS풀이)
그래서칼럼에 싣기에는 적적하지 않아 생략하도록 하겠습니다.
이 문제에 대한 로피탈 정리를 이용한 풀이입니다.
쉽지 않습니다. 그럼 역방향으로는?
다음과 같습니다.
풀이에서 f(x)는 최고차항의 계수가 1인 사차함수이므로 f(x)=(x-1)^3(x+k)이다.
라고 되어 있는 부분에 대한 질문이 많습니다. 주어진 식을 직접 극한 식의 분자에 대입해 보면 이해가 될거 같습니다.
로그 극한에 대해 칼럼에서 다루고 진행했음 좋았을걸 싶은데 그럼 글이 너무 길어져서 이정도로 마무리 하겠습니다.
그리고 위 문제에 대한 또다른 풀이입니다. 로피탈과는 상관없는데 관심있는 분은 보시라고 올립니다.
마지막으로 Quiz입니다.
위 EBS 문제 변형입니다. 역방향으로 도전해 보십시오~~
2021 파이널 모의고사 어썸&랑데뷰 (어랑 모의고사) 기대해 주십시오~~
저는 랑데뷰 수학 황보백 선생입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
실리를 보는거 맞는데 자존심때문에라도 선택지에 없음 다만 옛 지1과는 다르게...
-
스카이나 의대 갈 놈들은 이미 수시로 갔을테니 정시 쓰는 애들은 그냥 학벌보다...
-
현역 제외 국어 고수 제외 어떤식으로 공부하셨나요?
-
그럴 거 같은데 그냥 혹시나
-
같은과에 수시이월로 인해서 뽑는 인원 많아져야 펑크가 좀 나던데 이러면 펑크 가능성...
-
중앙대 합격생을 위한 노크선배 꿀팁 [중앙대25][교내활동꿀팁] 0
대학커뮤니티 노크에서 선발한 중앙대 선배가 오르비에 있는 예비 중앙대학생, 중앙대...
-
이거 ㅅㅂ 진짜에요? 17
담임이 오늘 전화와서 몇칸짜리 쓸거냐고 물어봐서 안정으로 7칸짜리 쓴다니까 이거...
-
ㅠㅠ
-
동국대 두드림 소프트웨어 예비 41번인데..1차 17명 빠졌거든요... 작년에...
-
형님들
-
카1지노 겁나 재밌네
-
왜냐면 이제부터 기다림이 24시간이 넘을 때마다대가리를 존나 쎄게 쳐서 제 머릿속을...
-
정시 스나 특징 3
ㅅㅁㅎ에서는 시선 그렇게 곱지 않은듯
-
패드사고 싶다 1
200이내로 추천좀 펜포함이면 더좋음
-
흠
-
인하대 전기전자 vs 숭실대 기계
-
보통은 엄마 본인이 학력에 집착이 있기 때문에 그런결혼을 하죠 학력에 집착이 없는...
-
예요인데 에요라 했네
-
국밥 제육 돈가스
-
한양대 입학처에 문의했더니 23일 이후에 변표뜬다는데 그럼 오늘 내일은 안뜨겠죠??...
-
isa계좌 만들어서 돈 주기적으로 넣으면서 묶어둘생각인데 통칭생활비라 불리는 것...
-
여친 없는데 왜클릭
-
세종 가능할까요 5
국숭세 중에 가능한 곳 있을까요
-
들리는 말에 의하면 한경오 기자들도 미국비자 안나오는 경우가 생긴다는데... 물론...
-
1학년 1학기 끝나도 전과가 되나요..?
-
수학 한달 안하고 이정도면 정상인가 조금 절고 풀이는 맞았는데 2^5를 25라고 해서... 틀림
-
어디서 다운받는거져..?플레이 스토어엔 안보이는디
-
30살 근처더 많나요??
-
빵이었나요?
-
우히히 완성 4
생각보다 묵직
-
지금 성대 인문과학계열이 6칸에 80등 정도인데 진짜 최악까지 갔을때 불합 나올 정도일까요
-
성균관대 합격생을 위한 노크선배 꿀팁 [성대25][성균관대학교 근처 카공하기 좋은 카페] 0
대학커뮤니티 노크에서 선발한 성균관대 선배가 오르비에 있는 예비 성균관대학생,...
-
근데 짜피 고대낮~서성한이라 노상관
-
소수과까진 아니지않나요?
-
엄마들이 말도 예쁘게하고..
-
수시 합격 11
약대 붙었어요 같이 빌어주신 분들 너무 감사합니다 3년 동안 수시 합격이 처음인데...
-
정시는 울어요….아직도 일주일이나 남았다는게 ㅠㅠ
-
노예비면 보통 1차때 예비 받을 확룰이 많을가요? 총 추합이 4번 있는데 보통...
-
아주vs인하 5
과는 둘 다 생명과학임 집은 아주가 더 가까움 (아주 1시간 /인하 2시간) 어디 추천하시나요
-
네 마녀의 날만 어떻게 잘 넘겨보자 오르면 더 좋고 으흐흐
-
표본분석 0
300명 뽑는 대형과는 표본분석어케해야됨
-
할 생각 접었습니다.
-
ㅈㄱㄴ
-
가는 과가 하필 계열제라 계열제는 반수하기 힘들다고 들었는데 진짠가요??
-
5등급제시행되서 9등급급된후에 안락사당하는거임? 진짜 내신반영은 씨발ㅋㅋ...
-
토키오 카케아가루 쿠라이마
-
할 생각입니다
-
오르비에 주식 글이 꽤 올라오길래 주식 공부해보고 싶은데 뭐부터 하는 게 좋을까요??
-
제주대 합격 됐는지 아닌지 알려주세요ㅠㅠ 등록예치금 내야 하고 기다려야 하나요?...
네 역로피탈의 정리라고 하지 않았습니다.
어머머 ~~ 정말 많은 생각을 하게 되는 포스팅이네요 ^^ 다만 고등학교 교과에서는 학생에 따라 갖가지 오해와 고민이 유발될 수 있는 개념이라 약간 투머치일 수는 있겠네요~~^^ 공감과 댓글 샤샥 작성하구 갑니다^^ 잇님도 제 블로그 놀러오세요~*^^*
칼럼 잘보고있습니다~
혹시 제가 올린 로피탈 질문글 이 성립하는지 봐주실수 있으신가요?
역시 굿굿!! 갓갓!!
혹시 맨 마지막 퀴즈 답이 4인가요?
아닙니다.
f가 어떻게 나왔을까요?