MediVa : 9월 모의고사 집중분석 _ 공통 16번
게시글 주소: https://orbi.kr/0003047991
9월 공통_16(Orbi).pdf
안녕하세요. 방학도 일찍 끝나고 시험기간이 닥쳐와서
* 수정
6페이지에 있는 B-E의 역행렬이 존재하지 않는지 알 수 없다를 존재하지 않는다로 수정해 주시기 바랍니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
첫눈 기념 ㅇㅈ 1
오랜만에 옛 제자를 만나서 즐거웠어요!!
-
성균관대 합격생을 위한 노크선배 꿀팁 [성대25][새내기라면 한번쯤은 해보면 좋을 것]] 0
대학커뮤니티 노크에서 선발한 성균관대 선배가 오르비에 있는 예비 성균관대학생,...
-
미래의 의료 : 비대면 전문 진료 1인 의원의 가능성 0
직원 고용하기도 귀찮고 비용도 많이들고 그냥 대충 집에서 전화로 혈압당뇨약 리핏,...
-
애인이랑 볼수있어
-
중앙대 합격생을 위한 노크선배 꿀팁 [중앙대25][중앙대학교 내부 장학금] 0
대학커뮤니티 노크에서 선발한 중앙대 선배가 오르비에 있는 예비 중앙대학생, 중앙대...
-
1.과목명이 에서 로 변경 2.'지위' 부분은 중학교 사회랑 겹친다고 삭제 3.수능 범위에서 제외
-
미적분이 학교에서 안열려서 못들었는데 cc나오려나요? 외고 내신 3점대에 수학은...
-
23살 새내기 0
20살 21살 동기들이랑 친해지기 힘들까요? 새터는 갈거 같은데 내가 20살때 일할...
-
긁혔음. 3
-
올해 겨울은 더 시리다
-
이화여대 합격생을 위한 노크선배 꿀팁 [이화여대25][이화여대 카공 맛집 탐방] 0
대학커뮤니티 노크에서 선발한 이화여대 선배가 오르비에 있는 예비 이화여대학생,...
-
건국대 합격생을 위한 노크선배 꿀팁 [건국대 25][기숙사 비전홀 vs 레이크홀]] 0
대학커뮤니티 노크에서 선발한 건국대 선배가 오르비에 있는 예비건국대학생들을 돕기...
-
12000명 나오려나? 4자리수 걱정해야 할 판
-
흠 1
음
-
2번은 모든 실수에서 연속인가요 아니면 x=-1에서 불연속인가요?
-
이건좀... 4
상하차 잡혔는데 4일연속 근무확정...ㅋㅋㅋㅋ
-
문과로 학과 상관없이 높은 대학 가고싶은데 서성한 낮과랑 중앙대 가능할까요?...
-
홍천 산악지대서 훈련 중 굴러떨어진 20세 육군 일병 사망 6
강원 홍천 산악지대에서 육군 일병이 훈련 중 경사에서 굴러떨어져 숨지는 사고가...
-
지지 최고
-
수능 국어를 공부하면서 처음에 감을 잡는거 빼고 감 잡은 후에 인강을 계속 듣는...
-
그걸 업체불러서 치우기가 되나
-
수학 실수만 안했어도…
-
오전훈련 끝 3
오늘같은날은 뛰는게 더 빠를듯
-
수능끝난 분들 1
요즘 뭐하면서 시간보내나요? 게임을 해도 시간이 정말 안가네요
-
사진 말고 눈으로 봐야 더 좋네
-
나가기 싫다 ㅠ 0
눈 너무 온단 말이얌,,,
-
∀x(Ex) 이 식의 뜻은 "모든것이 존재한다" 부정형은 ∃x(¬Ex) 이고 뜻은...
-
눈도 안오는디
-
ㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠ 아니 이게 이렇게 슬픈 노래였나......
-
동국대 한의대 1차발표 오늘 몇시에 나옴?
-
체감상 몇백mL는 흘린듯 ㅅㅂ
-
진짜설국이에요 너무예뻐요 다들한번씩밖에나가보세요
-
전교생 앞에서 독서감상문 낭독하는 기분... 빨리 묻혔으면
-
인상적인 꿈 1
쓰고싶은데 원래 꿈은 깨면 다까먹자나
-
과외알바를 생각하시는 분들을 위한 매뉴얼&팁입니다. 미리 하나 장만해두세요~~...
-
결론 : 2020년대생 이후로는 인서울대 프리패스 예정. 아니, 정확히는 지방엔...
-
저 지금까지 5년동안 헛산거같아요.... 이거 진짜 오래된건데 왜 안먹었지...
-
악몽 꿨네 8
꿈속에서 누구한테 버림받고 공황 오다가 깼는데 깨니까 그게 누구였는지 기억이 안난다...
-
그런거지?
-
화2 질문 0
화2에서 꼭 암기해야하는거나 암기하면 문풀에서 수월한것들 있나요?
-
일단 낙지 점공기준 제 앞에 7명 맞춤
-
답인 1번이 대놓고 개소리인거같긴한데 4번이 약간 헷갈려서 정답률이 낮은걸까요?
-
ㅈㄱㄴ
-
수2는 전부 이어지는 내용이라 기억이 나는데 수1은 까먹은 부분이 좀 있네요.. ㅜ...
-
휴학에 참가한 의대생들 전원 사형집행 하기로 결정 25학번 수업은 무리없이 진행될 예정
-
검사했는데 결과는 안뜨고 다시하려면 다시하라그러고 옘병할
-
고시류는 탈락하면 진짜 낫띵인데 의대준비하다가 의대성적 안나오면 낫띵이 아니라...
아무래도 해설을 자세하게 쓰려고 하다 보니 완성에는 시간이 좀 걸릴 것 같은데 이번 주 주말까지 완성하고자 합니다. 다음주부터는 또 시험기간이라서요.
이런자료..정말 감사합니다bb
http://orbi.kr/bbs/board.php?bo_table=united&wr_id=3037928
에 sos440님의 댓글을 참조하면
Warming Up의 5번 명제는 거짓이 아니라 참이라고 합니다.(중요하진 않지만 그래도 ..)
또 6페이지에
B-E의 역행렬의 존재성을 모른다가 아니고 존재하지 않는다고 서술해야 할 것 같습니다.
6페이지는 쓰다 보니 잠깐 잘못 생각했네요. 수정하도록 하겠습니다.
Warming Up의 5번 명제는 sos님의 명제와 약간 다른 것 같은데
제가 확인한
[명제] 두 2차 정사각행렬 A, B에 대하여, A^2 - 2AB + B^2 = O 이면 (A-B)^2 = O 이다.
이것을 말씀하시는 것인가요?
5번 명제는 A^2 -2AB +B^2 = (A-B)^2은 항상 성립하다이고,
이것은 식을 정리하면 AB=BA가 항상 성립한다는 것이니 조금 다른 것 같습니다.
아 그 [명제]에 관해서는 제가 착각했군요. 감사합니다~
진짜 쩔어요 ㅋ
메디바님 나형 21번 문제 분석좀 부탁드려요.. 이게 사실은 사람들이 그냥 방정식의 관점으로 풀어서 정답률이 그닥 낮지 않은데 이거 방정식으로 풀면 a=0일 때를 못 구하더라구요. 이거 실제 난이도는 이번 시험에서 제일 높았던 것 같은데 사람들이 그냥 풀어서 오답률은 낮은 것 같아요 방정식 관점이 왜 안되는지 분석좀요 ㅠㅠ
완전동감 저도 시험때는 덜덜덜 떨면서 'a 모두의 합인데 하나밖에 없네ㅠㅠ' 이러고 끝나고 나서도 방정식으로 푸니 그대로 나오더군요...
이거 방정식으로 어케푸셧어요? 전 걍 기울기 생각해서 따져봤는데..ㄷㄷ
(B-E)의 역행렬이 존재하는지 아닌지 알수없는게 아니라
존재하지 않는다는걸 빨리 명시해주시는게 좋을것 같아요
일단 파일이 올라간 상태라 글에 덧글로 붙였구요, 조만간 다른 문제도 함께 올릴 것이라 그 때 수정을 반영하겠습니다.
올려주신 자료 참 많은도움 되고있습니다
이런거 얻어가는 맛에 오르비에 들어오네요 ㅎㅎ 감사드립니다
진심으로 감사드려요!!ㅠㅠ