곡선의 길이 매개변수
게시글 주소: https://orbi.kr/0003041609
첫번째. a부터b까지 루트 1+f'(x)^2 적분변수 x 적분하는게 기본식이고 이해가가는데
두번째.매개변수가 개입될때 예를 들어 t가 개입될때
x=f(t) y=g(t)
여기서 곡선의 길이를 적분변수 t로 적분한다면
식x=f(t)에 x에는 a를 집어 넣었을때의 t값을 c라하고 x에 b를 넣었을때 거기에 만족하는 t값을 d라한다면
곡선의 길이는 c부터 d까지 루트 1더하기 f'(t)의 제곱을 적분 변수t로 적분한값아닌가요?
여기서 질문이 왜 제가 본 참고서에는 그냥 매개변수가t일떄도 a부터 b까지 적분한것으로 되어있나요?
제가 뭘 놓친건지 모르겠습니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅇㅈ언제함 2
대기중임.
-
-> 라이거 반대는 타이곤임
-
농어촌 가능해요 그냥 궁금해서 물어봄
-
정품은 이제 더 이상 떨어질 이미지가 없음
-
저는 좌빨극우임 2
?
-
심심해유 0
ㅇㅈ해주세요
-
말로만 인증한거 아니고 찐으로
-
스카이캐슬볼까 0
입시끝났으니까 ㅈㄴ재밌게볼수있을거가튼데 흐흐
-
의문
-
그림그려드립니다 14
그림 그려드립니다 크하하
-
저는 극우좌빨임 4
??
-
정시 연대 디스플레이융합공학과랑 약대 붙었는데 어디갈지 추천좀 해주세요 연대는 계약학과예요
-
투자해볼까 생각중인데 11
경험용으로 100?정도로 근데 그냥 주식하는게 낫겠지? 코인은 너무 도박성의 느낌이 강한듯
-
다이어트 정체기 5
비상비상 몸과 마음은 지쳐가는데 몸무게는 쉴 틈을 안 준다 딱 오키로만 더 빼자
-
사람들 많네 0
영화 탈주 안 봄?
-
아빠는 서울대 엄마는 이댄데 나는 건동홍 턱걸이라 우럿서..
-
오류 정지됨
-
학교-3년제 전문대학,기숙사 생활 원칙 위치-인천광역시 남동구 슬로건-인천으로의...
-
통대지 바베큐 1
해줘 기대중
-
채찍보다 좋음?
-
근데 요즘 아파트는 헬스장 목욕탕 탁구장 스크린골프장 이런거 다있음? 9
어디는 식당도 있던데 신식이면 다 있나 요즘
-
여캐투척 0
-
이새끼왜20만덕이넘어감
-
질문받겠습니다 20
안받습니다
-
저 여르비니까 얼른 몰려와주시고 앞으로도 많은 관심 부탁드립니다 라고 계속 어필하는...
-
시비 ㄴㄴ 7
시비걸면 확
-
만화책 추천좀 1
설기간동안 과외,알바 안뛰니 개박수상태네 쩝...
-
개인적으로 애쉬 그레이 엄청 예쁜 것 같아요… 뭔가 너무 튀지 않으면서 개성도...
-
재수합니다 vs ○○대 갑니다
-
한 번 보고싶긴 한데
-
열심히해서 마무리 잘하면 ㅈㄴ 멋있겠지?
-
글만 씀
-
이런건 누가정한거임? 14
제사지낼때는 잘때 거실에 불켜놓고 자야하는거래
-
새르비 하던가 10
놀아줄게
-
과탐 선택 가이드 17
1. 2과목과 화학은 하지않는다. 2. 지구과학을 반드시 선택한다. 3. 물리를...
-
여자친구 생김 7
사실 아님
-
새르비때
-
혼란스럽네 6
왜 한분은 연뱃달고 고대프사고 한분은 고뱃달고 연대프사에요?? 둘이 사귀나요 저랑도 할분???
-
하루종일 글을 쓰고 잇진 않잖아
-
몸무개 5
몸=무 개
-
이해해주셈뇨 2
동생이 펌하면 2~3일동안 머리안감는데 좋다고 오늘 감은거임뇨
-
떳다 내 야동 6
포르노 송ㄷㄷ
-
아는 동생이 원서 쓴 데가 그때 나온다는데... 혹시 아시는 분 있나요? 수도권인 거 같긴 해요
-
고3 현역인데 개정 전이랑 후 둘 중에 뭐 들을까
-
섹스하고 잇다 21
추위를 뚫고 딸기라떼를 사왔어
-
강대 의대관 0
강대 의대관 전액 장학으로 들어가면 무조건 제일 높은 반인가요? 강대 기숙 유명한...
-
외로우니까 3
나가야겟다;
(x, y) = (f(t), g(t))
로 t에 대해 매개된 곡선이 있다고 합시다. (단, 이 곡선은 좋은 곡선이라고 합시다.) 그러면 이 곡선의 길이는
L = ∫_{from a to b} √(f'(t)² + g'(t)²) dt
가 됩니다. 이 경우의 특별한 케이스로, x = x 이고 y = g(x) 이면 - 즉, 주어진 곡선이 어떤 함수의 그래프로 나타나고, 이 그래프를 x축 좌표로 매개화하였을 때 - 질문하신 식이 따라나옵니다.
왜 이런 식이 나오는지를 이해하셔야 이러한 일련의 스토리를 이해하실 수 있으리라 생각됩니다.
곡선의 길이의 식에 담긴 핵심적인 아이디어는, 주어진 곡선을 아주 잘게 썰어서 각 미소곡선을 직선처럼 생각하는 데 있습니다.
구체적으로, [a, b]라는 구간을 아주 잘게 나누어 a = t_0 < t_1 < … < t_n = b 으로 쪼개면, [t_0, t_1], …, [t_(n-1), t_n] 이라는 n개의 아주 작은 구간들로 쪼갭시다. 그러면
∑_{k = 1 to n} √[ { f(t_k) - f(t_(k-1)) }² + { g(t_k) - g(t_(k-1)) }²]
는 주어진 곡선의 길이와 가깝게 됩니다. 이제 쪼개는 폭을 더더욱 좁게 만들면, 위 극한은 곡선의 길이에 해당하는 값으로 수렴하겠지요. 그런데 중간값 정리에 의하여 시그마 내부의 식은 사실상
√( f'(t_k)² + g(t_k)² ) Δt_k (단, Δt_k = t_k - t_(k-1))
과 같아집니다. 따라서 주어진 극한은 적분
∫_{from a to b} √( f'(t)² + g(t)² ) dt
로 수렴합니다. 그리고 마찬가지 아이디어를 y = f(x) 라는 그래프의 일부분에 적용하면 질문하신 식을 얻지요.