미분가능 문제 하나만 알려주세요..
게시글 주소: https://orbi.kr/0003028155

이런 문제는 어떻게 접근해서 풀어야 하나요..?
답지는 그냥 반례를 들어서 풀어주고
lim 붙어있는것을 그냥 f'(X)로 하면 안되고 그런게 너무 헷갈립니다..
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
발에 물 다 튀었네
-
현역 때 지구 사문 하고 재수 때 9모 전에 사탐런 했는데 삼반수 논술 최저 맞춰야...
-
오랜만이에요 1
신체적으로나 육체적으로나 많이 힘드네요 결국 잘 될거라 믿어요
-
나트륨 크래프랑 칼륨 크래프랑 교차하는 부분까진 막전위가 증가해야 하는거 아닌가요...
-
카페에서 7
커어어어어어어 하면서 잔것 같은데 어쩌지..음료 시켜놓은거 다녹앗네 이제 돌어가야하는데
-
솔플하기에 ㄱㅊ? 분위기 안좋다는 얘기 있는데 혼자 다니면 신경쓸 정도는 아님?...
-
한우 듬뿍 국밥 7
맛있어요우
-
24시간의전사 5
화하하하하학 렛츠고
-
다 까먹음 걍 해설보고 발상정리하다보니까 원래 실전개념 뭐 배웠는지도 모르겠음
-
지방 일반곤데 애들 김범준 왜이리 좋아하냐? (무슨 비하의 의도 그런게 아니라 그냥...
-
놀아줘 5
-
그래
-
근데 그거 먹으면 당이 많아서 그런지 오히려 졸림.. 그래서 노랑으로 갈아탔음
-
생윤 동사 같이 듣는애한테 멘티 제안했다가 개까임 ㅋㅋ 2
두구보자 ㅡㅡ 성적 어떻게 나오는지
-
?
-
국어 ebs는 더 유기해야겠다 걍 작수 연계체감 현대시 하나만 받고도 수능 잘봤는데...
-
지눌과 의천의 공통점 선종의 수양 방법과 교종의 수양 방법을 모두 갖추어야 함 이거 맞나요?
-
물리 하다가 도저히 안 될거 같아서 사탐으로 바꾸려고 하는데 제가 역사 배경지식이...
-
적당히 먹으려고 1
와퍼 주니어 삼..
-
지금 하루에 과탐 4~5시간 수학 6~7시간정도 잡고 하고있는데 드리블 킬러에...
-
요즘 인생의 낙은 10
토요일 밤에 친구들이랑 옵치 5인큐 돌리는거임 너무 재미씀
-
12-3월<<< 5
이때 수학 등급역전 쌉가능한 시즌인듯 ㄹㅇ 저도 3개월동안 폐관수련했더니 처음보는 등급이 나왔음
-
주변엔 6모이후부터 한애들도 있고 그런데 지금부터라도 빨리 시작해야함?? 미적1임...
-
D-205 0
수학 2단원(원순열~중복순열) 기출 20문제 국어 내신 2지문 분석, 문제풀이
-
부모 둘다 공부와는 거리가 먼 (해도 안돼서 포기햇다고함) 집 자녀가 두돌전에...
-
졸업할때까지 길 못외울거같음
-
근데 큐브에서 풀어줄라다가 설명할 자신이 도저히 없어서 gg침..
-
직접 하긴 귀찮아서 그냥 남에꺼 보고 싶다...
-
기출 어느정도는 다 아는데 좀 다시 한번 싹 정리하고 싶어서.. 걍 무난하게 수분감 ㄱ?
-
혹시 수학 약해서 몇달동안 수학만 하신 분 계심? 20
한달반동안 거의 수학만 해도 되려나
-
크보 인기 많으니까 편승할라는 건지 모르겠는데 크보팬들 데려다가 조롱하고 자빠졌네...
-
“게이들은 카리나도 안좋을까”만 올리는건 성평등에 맞지않는것같아서 올립니다
-
[속보] 대법원, 이재명 '선거법 위반' 사건 전원합의체 회부 5
대법원이 이재명 전 더불어민주당 대표의 공직선거법 위반 사건을 재판부 배당 당일인...
-
노래 좋다
-
흠,, 3
군대튀하고 싶군
-
아으 힘들다 2
알파카메일이 되고싶구나..
-
오늘은 자기 질문할 것도 없는데 거기 시끄럽다고 그냥 안간데 난 뭐 같이...
-
근데 전체적으로 빡빡하네여 통합 교육 대두라 문법 문학 비문학 작문 계속 튀어나오니 풀면서 빡빡했음
-
걍 6모 전까지 딴 공부 안하고 거의 수학만하는거 어떰 2
수학이 진짜 제일 급한데 아 사문런해서 사문 개념만 좀 하고 이동시간엔 어차피 공부...
-
스타팅 블록 수2는 별로 배워가는 느낌이 없는데.. 11
8강까지 들었는데 지금까진 뉴런 하위호환 느낌임 수1을 들어봐야 되는 것인가
-
단원별 n제는 드릴 정도만 하고 걍 서킷 브릿지 지인선 이런것만 풀고싶음......
-
서울대 카이스트 학생들 그리고 포공 연공 고공에서는 최상위권 학생 뿐임
-
킬캠보다 어렵다는 최근 실모들보다 옛날 킬캠에서 더 많이 박살남 ㅋㅋㅋㅋㅌ
-
근데요 2
게이는 아닌데 차은우랑 사귈래 하면 사귈듯
-
흠 여기만 타겟팅하는데 뭐가 문제지
-
지들 듣던 강사의견이랑 다르면 또 댓글로 ㅈㄴ 야랄할게 눈에 선해서 이건 그냥 클로즈할까 생각된다
-
밖에 비온다 0
비 멈추면 날씨 좋아지겠지~ 택시 탔는데 계속 콧물 훌쩍훌쩍 거리니까 기사님이 왜...
-
잇올 퇴근 완 2
기분이좋군
-
생윤 윤사 재밌다고 철학과 오는 것이 맞는가 - 눈덩이의 중간고사 준비 서양근대철학 입문편 0
*이 글은 필자의 뇌피셜과 드립이 난무하는 글입니다. 설명을 위해서라면 교육 과정의...
교과서에 '미분'의 정의를 다시한번 보시는게 좋을 듯 싶네요. 미분이라는 것은 평균변화율의 극한값 입니다. 위의 문제처럼 f(x)가 미분가능한 다항함수라는 말 등이 언급되어 있지 않으므로, 미분가능하다 라는것을 알려면 평균변화율의 극한값을 계산해야지 알 수 있습니다.
ㄱ. 같은경우 앞에 lim 을 빼면 평균변화율이 됩니다. 거기다가 lim 를 붙였는데 그 값이 0 으로 존재한다는 것은 즉. x=1에서 미분이 가능하다는 뜻이지요. 미분이 가능하면 연속이다. 라는것은 교과서에 나오는 것이므로 ㄱ은 맞는 것이되구요.
ㄴ. 도 평균변화율의 극한값이 존재하므로 x=1에서 미분이 가능합니다. 앞의 식을 이용해서 뒤의 식을 적절히 변형하면 같은 꼴 2개로 나뉘어 지는 것을 알 수 있죠. f(1)을 빼고 더해서 식 2개로 나누면 앞의 식과 동일한 꼴이 2개가 나오는 것을 알 수 있습니다.
ㄷ. 은 미분가능하다는 언급이 없이 함수의 꼴이 주어져 있으므로 직접대입해서 구해야합니다. 특히 주어진 f(x)꼴이 절대값을 포함하는 즉, 미분이 안되는 곳이 있는 특이한꼴의 함수이기 때문에 반드시 대입해서 구해야합니다. ㄴ번 처럼 구해서 2f'(1)이겟네 라고 구하시면 안됩니다. ㄴ과 달리 ㄷ은 x=1에서 평균변화율의 극한값이 존재한다는 근거가 없기때문입니다. 물론 그려보면 쉽게 미분불가능인 것도 알 수 있구요.
다항함수처럼 미분해서 도함수를 구한 뒤 극값을 찾는 경우나 그래프 개형을 알아보는 경우 등을 제외한 '미분이 가능한가?' 를 판단하는 문제에서는 무조건 미분의 정의를 이용해야합니다. 미분의 정의는 평균변화율의 극한값입니다. 이것이 존재하면 미분이 가능한 것이고 존재하지 않으면 미분이 불가능 한것이죠.
ㄷ은 기하적으로 보면 x=1에서 좌우로 거리가 h만큼 떨어진 좌표의, 함수값의 기울기(평균변화율)가 x축과 평행한 선이 나옵니다. h가 0으로 갈수록 x=1로 가까워지는 비율도 같으므로 계속 x축에 평행한 기울기 0인 직선이 나옵니다.
자세한 설명 감사드립니다. 꼼꼼히 읽고 다시 한번 생각해봐야겠네요.
인강선생님들이 대표적으로 '잘못된 풀이 방법'으로 예를 드는 문제네요 ㅋ