미분가능 문제 하나만 알려주세요..
게시글 주소: https://orbi.kr/0003028155

이런 문제는 어떻게 접근해서 풀어야 하나요..?
답지는 그냥 반례를 들어서 풀어주고
lim 붙어있는것을 그냥 f'(X)로 하면 안되고 그런게 너무 헷갈립니다..
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
고역이다 고역 ㅠㅠ
-
경제하고싶다 0
재미원탑경제 끼고 사문경제하고싶어 근데 지1은 점수땜에 버리기아까운데
-
누워서 과자쳐먹으며 유튜브 보고싶어
-
고려대 캠퍼스에 조국혁신당 ㅋㅋ….
-
6등급인데 수1 수2 워크북 공부할때 결국 풀리긴 하지만 처음 봤을땐 시발점 노베...
-
정말 하기싫다, 머리에 넣으면 다시 뱉어낸다.. 하지만 이 짓거리 1년 더 하기...
-
섞어서 안하고 일단 무조건 그것만 잡고 팜?하니 내가 너무 왔갔다 하나..
-
이해가안됨
-
1월달에 잇올 다님=너무 멀어서 포기함 지금 독서실 다님=나름 만족중 근데 건물...
-
확통+사탐 vs 미적+사탐 한약수 목표 뭐가 좋을까요? 5
확통+사탐 vs 미적+사탐 한약수 목표로 뭐가 더 좋을까요? 한약수 중에 아무거나 상관없어요
-
오프라인 전용이랑 인강 차이 나는 편인가요?
-
보약n제 3
라고 하시죠 마약이라는 말......
-
심지어 게으르기까지 하다면 걍 닥치고 기숙학원 가야됨 넌 독재로 절대 관리 안된다....
-
제노 챌린지 샤프 (2025 수능샤프) 컴퓨터용 사인펜 (2025 수능사인펜)...
-
일찍일어나는법 0
빰빰빰빰빰빰빠라밤빰빰빠라밤빰빰빰빰빰빰빰
-
내가 수능 더 잘봤어 이 씹련아. 잘 살아라.
-
저녁 9
돼지갈비
-
일하기 싫어.. 4
-
신이시여...! 1
제발..
-
내가 핑계대는 것들 다 보면 걍 좆까고 공부하러 가면 해결되는 문제들 뿐임. 늦게...
-
추가모집은 0
수시 정시 다 떨어진 사람만 쓸 수 있는거임?? 무한으로??
-
뭐 마실까 사이즈 업 할 거임
-
헤응
-
과대 인사했는데 뻘쭘할거 같아서 답변해주고 싶은뎅…
-
추가모집 마렵네...
-
개짜증나네ㅔ
-
도서관에서 연애작작좀 12
앞자리 연애하는거 보니깐 ㅈ같음 그냥보기싫은게아니라 옷벗어어주고 팔뚝 만지고 지...
-
수1,2 미적분 기출문제집 1회독씩은 끝냈는데 4점짜리 문제들중 못푼문제가 많아요...
-
그게 낭만적이니까 그것이 신이 원하는 거니까 반드시 이루어진다
-
대부분은 이해가 가는데 몇개는 좀 이상한게 보임 아니 이게 왜 이리 좋아요가 많지?...
-
현우진 풀이 되게 복잡하던데 다들 저렇게 범위 좁혀서 푸심?
-
고대 추합 결과 3
다들 나왔다고 하는데 어디서 확인해요? 입학차 들어가도 안보이길래 +수시도 나왔는지...
-
남극한+여극한= 3
보추... 죄송합니다 ㅠㅠ
-
자퇴한 사람들은 진짜 상황이 개인별로 어마어마하게 다르다는 거.. 오르비에 올라온...
-
메타 왜이럼 2
다들 미쳐가는군
-
팔로잉 초기화 못함?? 16
나 큰일난거??
-
머임
-
귱금해용
-
ㅂㅂ
-
고대 수학진단평가 상위 33퍼떴는데 자존심 존내상함
-
경희 1
잠깐이지만 재밌었다
-
특히 나같은 수학 2등급따리는
-
주머니도 바지입니다
-
3등급 이상들은 거의 다 맞는 문제인건가요 수학입니다
-
어디감?
-
배추 3
고추
-
현역은 실패하고… 재수하면서 사탐의 가고 싶은데, 사람들마다 말이 달라서ㅇㅇ 나는...
-
팩트임
교과서에 '미분'의 정의를 다시한번 보시는게 좋을 듯 싶네요. 미분이라는 것은 평균변화율의 극한값 입니다. 위의 문제처럼 f(x)가 미분가능한 다항함수라는 말 등이 언급되어 있지 않으므로, 미분가능하다 라는것을 알려면 평균변화율의 극한값을 계산해야지 알 수 있습니다.
ㄱ. 같은경우 앞에 lim 을 빼면 평균변화율이 됩니다. 거기다가 lim 를 붙였는데 그 값이 0 으로 존재한다는 것은 즉. x=1에서 미분이 가능하다는 뜻이지요. 미분이 가능하면 연속이다. 라는것은 교과서에 나오는 것이므로 ㄱ은 맞는 것이되구요.
ㄴ. 도 평균변화율의 극한값이 존재하므로 x=1에서 미분이 가능합니다. 앞의 식을 이용해서 뒤의 식을 적절히 변형하면 같은 꼴 2개로 나뉘어 지는 것을 알 수 있죠. f(1)을 빼고 더해서 식 2개로 나누면 앞의 식과 동일한 꼴이 2개가 나오는 것을 알 수 있습니다.
ㄷ. 은 미분가능하다는 언급이 없이 함수의 꼴이 주어져 있으므로 직접대입해서 구해야합니다. 특히 주어진 f(x)꼴이 절대값을 포함하는 즉, 미분이 안되는 곳이 있는 특이한꼴의 함수이기 때문에 반드시 대입해서 구해야합니다. ㄴ번 처럼 구해서 2f'(1)이겟네 라고 구하시면 안됩니다. ㄴ과 달리 ㄷ은 x=1에서 평균변화율의 극한값이 존재한다는 근거가 없기때문입니다. 물론 그려보면 쉽게 미분불가능인 것도 알 수 있구요.
다항함수처럼 미분해서 도함수를 구한 뒤 극값을 찾는 경우나 그래프 개형을 알아보는 경우 등을 제외한 '미분이 가능한가?' 를 판단하는 문제에서는 무조건 미분의 정의를 이용해야합니다. 미분의 정의는 평균변화율의 극한값입니다. 이것이 존재하면 미분이 가능한 것이고 존재하지 않으면 미분이 불가능 한것이죠.
ㄷ은 기하적으로 보면 x=1에서 좌우로 거리가 h만큼 떨어진 좌표의, 함수값의 기울기(평균변화율)가 x축과 평행한 선이 나옵니다. h가 0으로 갈수록 x=1로 가까워지는 비율도 같으므로 계속 x축에 평행한 기울기 0인 직선이 나옵니다.
자세한 설명 감사드립니다. 꼼꼼히 읽고 다시 한번 생각해봐야겠네요.
인강선생님들이 대표적으로 '잘못된 풀이 방법'으로 예를 드는 문제네요 ㅋ