제가 변곡점을 잘못이해하고있는걸까요.
게시글 주소: https://orbi.kr/0003016505
f(x)= x/x^2+1
그래프를 미분하면
f'(x)=-x^2+1/(x^2+1)^2
또미분하면
f''(x)=분자에 +-루트3
원래 함수를 미분하면요 . x축에 두근을가지면서 위로볼록인 그래프가나오는데요.
변곡점이라는게 함수값을 두번미분했을때(즉.이계도함수에서) 음양부호의변화잔아요.
이렇게말한다면 한번미분했을때의 함수에서 위의 식대로라면 위로볼록일때 x=0에서 즉 기울기가 0이되는경우
(그림으로 본다면) 한곳밖게없어야할텐데(위로볼록이니깐) 어떻게 이계도함수값에선 음양부호 변화가일어나는곳이 두곳이 더생겨날수있죠?
분명히 한번미분한함수값의계형은 위로볼록이니깐 한곳밖게없어야될텐데여 먼가 제가 잘못알고있는걸까요....?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
뭐야 ㅅㅂㅋㅋㅋㅋ 진짜네 현돌-대성 뭔 일이 있었구나 0
https://blog.naver.com/cucuzz/223459130784?trac...
-
23 수2드릴 모르는거만 모아서 풀고있는데 한 권에서 두개나 못풀엇어 ㅠㅠ 으휴야 으휴
-
자 드가자
-
정신과옴 2
상담하고 검사 예약하고 숙제 받았음
-
서치좀 해보니꺼 37만원인거 같은데 맞나요? 그리고 환급없나
-
생윤 강대에서 수업듣는데 은근히 현돌 까는거 같음.... 기출 선지를 달달 외우는게...
-
님들 이거 외움?
-
그니깐 성적이 그 모양이지
-
그냥 소주에 물탄느낌임... 겁나독함....
-
생각보다 빨리끝나서 할게없는데 그냥 회독하는게 맞겠죵?
-
솔짇히 발췌해서 들어도 되는거 아닌가..? 목표가 2라면..
-
뀨뀨 9
뀨우
-
ㄹㅇ 억까야 필수를 못듣게하는건
-
수학 ㅠㅠ 5
시발점 하기 전에 한번 보면서 풀어봤는데 예제랑 다 풀리는데 뉴런으로 넘어가는건...
-
ㅇㅂㄱ 7
-
ㅈㄱㄴ
-
503은 절대 안되는 점수였죠?
-
문과나 이과나 큰차이 없는걸로 아는데
-
얼버기 2
-
요즘 더욱 느끼는게 남말 듣고 강사 정하면 안된다임 1
강민철 현우진등 무조건 1타라고 듣는게 아니라 조금이라도 들어보고 3타라도 자기한테...
-
학복스에서 노트북 시킨거 배송대기중인데 학복스계정이 에타랑 연동되어있어서 에타...
-
나는 "한완수"
-
독학재수학원 다니는데 매달 정기상담 받는 서비스를 신청했어요. 학원 상담 시 다들...
-
올해 수능봑는데 문학언매는 다 맞고 독서에서 16점 다 나갓는데 독서 완전...
-
왤케 스트레스지 8
사람만나기 부담스럽네
-
뭐라고 생각함
-
주인 잃은 레어 1개의 경매가 곧 시작됩니다. 번개장터"취향중고플랫폼" XDK...
-
실전개념 바로 하나요? 아님 기출 풀고 실전개념 하나요?
-
비록 그렇게 높은 대학은 아니지만 수험생활 하면서 오르비 도움 많이 받았습니다....
-
점심부대찌개 2
흐흐흐
-
다 디시하는줄 앎 네..
-
기출이었던거 같은데 어떤건지를 모르겠음
-
마닳+마덩텅만해도 충분할까요?
-
배고픈데 1
일어나는게 더 싫네
-
10주차부터 합류한다고 치면 장재원쌤 박종민쌤 9주차까지 vod를바로...
-
필요한 학과 서울대 정외 지균 인문 지균 역사교육 아동가족 윤리교육 연세대 문헌정보...
-
연세대 오르비 꺼라 10
넵.
-
맨시티 개썰렸네 1
32강떨 아으
-
작년에 수학에 많은 시간을 못 쏟아서 실전개념+기출한두번 풀고 백분위 83 나왔어요...
-
현실판 넷플릭스 ‘수리남’…국정원, 나이지리아서 국제마약총책 검거 1
현지 마약당국과 공조해 ‘K·제프’ 붙잡아 세계에 거점 두고 국내로 마약 반입 지속...
-
인강선생님이 예습 - 강의 - 복습 하라고 하시던데 예습에서 다 풀리면 강의 안봐도...
-
아님 다들 부모님이 내줌?
-
재수해고 얻은거 0
불어난 살 나빠진 건강 심해진 열등감 ㅠㅠ
-
첫 정답자 2000덕 드리겠습니다!
-
채무불이행 책임과 담보책임을 다루는 지문이 있는데 법무부가 입법예고한 민법...
-
그래도 애들은 꽤 착한편이라 생각함 찐따가 많아서 그렇지 (나도임)
-
화면에서만 보던 카나쟝.. 이젠 내 여자임..
왜 f'(x)의 그래프가 위로 볼록하게 생겼다고 생각하시는지 잘 모르겠네요. 실제로 그래프를 그려보면 3곳이 나타납니다.
f'(0) = 1
f'(2) = -3/25
lim_{x→∞} f'(x) = 0
만 봐도 주어진 그래프가 위로 볼록일 이유가 없죠.
제가 '한'선생님한테 배운바에의하면 몇개 함수의 그래프 개형을 그리는 과정에서 보통의경우 분모가 제곱이고 어 그러니깐. 어떤수를대입하건 분모가 양수인경우...라고해야되나 한선생님은 딱 '분자'만 고려하시더라구요. 미분함수값의 분자에있는 그니깐 -x^2+1을 본다면
분자만고려하는경우 -1하고 +1에서 음양의부호변화가일어나니깐 그점에서 극댓값을갖고 여기서 미분함수의 그래프의 개형을 본다면 위로볼록인 그래프가나오고 결국 x=0에서 사실상 극댓값을갖는 즉 변곡점을 갖는 점 하나만 존재한다고 판단했거든요. 댓글달아주신분님께서 미분함수값이 위로볼록이아님을 알려주시긴했는데 제가 위에서 한선생님한테 배운 오류좀 정정해주시면 안될가요.
가장 간단하게 말해서, 함수를 바꾸면 당연히 결론이 달라질 수 있는 것입니다. 그게 이유의 전부라고 해도 과언이 아니지요.
물론, 어떤 한 점의 근처만 보고 싶을 때에는 주어진 방법도 나쁜 방법은 아닙니다. 하지만 넒은 범위에서 보면 분자만 본다든가 하는 편법이 원래 그래프에 대한 정확한 정보를 전달하기에는 너무 부족해지지요.
제시하신 방법은 수학적인 방법이 아니라 단지 한정된 시간 내에서 주어진 함수의 개형을 빠르게 판단하기 위한 편법일 뿐이며, 따라서 이를 전적으로 신뢰하는 것은 당연히 문제가 있습니다.
아 감사합니다. 편법이었군요. 절대적으로 신뢰하지않겠습니다.