제가 제대로 이해하고 있는 건지 궁금합니다. -수학-
게시글 주소: https://orbi.kr/0002864914
1. f(x)가 감소함수가 되려면 f'(x)<0 이어야 한다.
그러나 고교과정에서 수능에 나올 수 있는 함수에 대해서는
f'(x)<= 0 으로 풀어도 된다.
왜냐하면 고교 과정내의 모든 함수(따로 정의 해놓지 않는 이상)는
f(x)가 감소하다가 일직선이 되었다가 다시 감소하는 경우는 없다(즉, f'(x)=0 주위에서 f'(x)<0 이고 f'(x)=0 인 점의 갯수는 유한하다.)
2. f(x)가 감소함수 이면 f'(x)<= 0 이다.
3. f'(x)<0 이면 감소함수이다. (등호가 들어가지 않는 이유는 상수함수 때문이다.)
제가 맞게 이해하고 있는 거죠?ㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
늦게 사탐런 0
생지러인데 3모 보고 사탐런 결정해도 시간 충분할까요?
-
언미화물2 97 95 1 97 98 이거 높반 가능한가요? 수학이 좆망했는데
-
새로운 플레이리스트로 스펙트럼을 좀 넓혀봤어요 사실 힙합도 이런 감성적인 노래들을...
-
통학하면 가는데만 1시간 30분정도인데 더 멀리서 다니는 사람 있음? 일산 사는데 빡세네
-
ㅇㅂㄱ 0
-
링거 꽂고 다니는 것마냥 계속 충전기를 꽂아놓고 있어야해..
-
투표 1
ㅇㅇ
-
순순히 어두운 밤을 받아들이지 마오. 노인들이여, 저무는 하루에 소리치고...
-
누가 매일 1시에 기절시켜줬으면 아니야 그대신 앞으로 몇달간 새벽에 이런건...
-
명륜진사갈비 혼밥안되나..
-
아군
-
설대 최초합 등록 포기하고 의대 추가 합격된 곳으로 등록이 가능한 거죠? 그리고 이...
-
우선 괴델의 불완전성 정리제1정리. 페아노 공리계를 포함하는 어떠한 공리계도...
-
얼버기한 이유 6
오늘은 학원 강사 면접 보는 날이에용 ㅎㅎㅎ 절 응원해주세용!!
-
환전해놨는데 다 날아가네 ㅜㅜ
-
인생망함 3
ㅇㅇ
-
사람이되고싶다 4
앞으로 남은 272일동안 쑥과 마늘만 먹으며 수능을 준비한다면 4수 끝에 사람이 될수 잇을까
-
건동홍시임
-
질문해드려요 19
철학적인 질문을 던져보도록 노력하겠습니다
-
아니 이거 근데 오른쪽 눈은 눈무링 안나고 왼쪽눈만 눈물이 자꾸 고이고 뿌옇게 보이고 이러는데 2
이거 진짜 이항한거 아님?
-
저도 무물보 18
해볼게요
-
뉴런책 배열을 수1 23 24 25 26 수2 23 24 25 26 미적 23 24...
-
네임드는 이 시간에도 무물글이 5분만에 저렇게 차는구나 4
이게 고닉인가...
-
할수이ㅛ다
-
돌아가구싶다 2
나 돌아갈래
-
일취클 피램 다 띁나면 사모로 넘어가는게 맞을까요?
-
애반가요??
-
피로도 다쓰고 캐릭터 생성제한도 걸려서 더 할게없네
-
1. 고전논리는 완전함2. 산술체계는 고전논리로 나타낼수 있음3. 산술체계는 완전함...
-
무엇이든 물어보아주세요 13
선넘질 ㄱㄴ 선넘질 ㄱㄴ은 쉽게 오지않습니다.
-
굿나잇 2
ㅃ
-
일클 취클 문학 피램 풀건데 고전시가는 인강or문풀중 뭐가 좋을까요?인강추천한다면...
-
무엇이든 물어보세요! 23
생각보단 자주 안오는 기회에요
-
졸리니까 1
운동
-
지금까지 안잤네 진짜 어카지 조졌다 하…..
-
잘자요 10
꿈에서 깨지 않았으면
-
XX님 따라하게
-
막 부모님이랑 싸우다가 부모님이 화내면서 님들 소중한 물건 찢거나 버리거나 한적...
-
국어가 장애인급이면 반수 접는게 맞음?
-
오야스미 0
네루!
-
국어가좃같은데반수접을까그냥
-
이렇게 곁에 있는데도 저 멀리 보이는데 그래도 괜찮아 꿈이어도 괜찮아 지금만큼은...
-
사실 저말이에요 19
전생 계속 티내고 있거든요 근데 알아보시는 것 같기도 하고 못알아보시는 것 같기도 하고
-
2.13 일기 7
사람들은 왜 수능을 더 보려고 하는걸까 비단 수능뿐만 아니라 편입이나 논술도...
-
아 춥다 스벌 2
우어어
-
기병 is so cute 이거 아직도 하시나요? ㅈㄱㄴ
-
모닝 짤 0
-
211021 논증 풀이 18
D에서 직선 AB에 수선 내리자. (수선의 발 F), 그럼 A,E,F,D도 한 원...
-
님들 안자네 0
키 안큰다 쪼.꼬.미~?
-
시발아 풀로 준비한덧도 아니고 90일정도준비했는데 과는 원하는과왔잖아 안그래? 하좀그만
네 말로만 기억히지 마시고 그림으로 기억하시면 더 편할텐데요..
다항함수 -x3승이랑 님이 1번에서 말씀하신 감소하다 일직선이 되었다가 다시 감소하는 그런 인위적인 함수만 머리속에 그려놓으면...
다신 이런고민은 안하실꺼같네요
2번 미분가능하다는 조건이 있어야 합니다
1번 아예 틀립니다. 이건 명제부분 개념을 다시 잡으셔야 할 듯 하네요
1번 왜 틀렸나요? 가르쳐 주셔야... ㅜㅜ
(1) f(x)가 미분 가능하고 증가함수이면, f'(x) ≥ 0 입니다. 그리고 등호를 뺄 수 없는 반례들이 무수히 존재합니다. (예: f(x) = x³)
(2) 그리고 역으로, f(x)가 미분 가능하고 f'(x) ≥ 0 이며, f'(x) = 0 인 점이 유한하면 f(x)는 증가함수입니다.
(3) f(x)가 미분가능하지 않으면 당연히 (1)이나 (2)와 같은 이야기는 불가능합니다.
즉, 지금 마니털 님이 실수하고 있는 것은 어떤 것이 필요조건이고 어떤 것이 충분조건인지를 혼동하고 계시다는 것입니다.
우선1번 부터. 차근차근 생각해봅시다.
개념학습이 아직 덜 되신상태같은데 교과서의 미분의 활용부분에서는 감소함수의 정의를 임의의 실수 af(b) 이면 감소함수라고 정의하고 있습니다
그리고 f'(x)를 이용해서 증,감을 판별하는 방법을 설명하고 있죠. f'(x)를 이용해서 함수의 증감을 판별하는건 관찰하는 부분에서 미분가능한 함수라는 조건이 있어야 합니다
그러므로 미분을 이용한 판별은 감소함수의 정의를 이용한 판별의 충분조건이지 필요조건이 될 수는 없다는 말입니다 이게 이해가 안가시면 명제단원 제대로 이해하고 오셔야합니다
이 설명이 이해가 가면 2,3번도 이해가 가실겁니다.
그런데 수능에 나오는 함수는 모두 f'(x)로 풀어도 된다는건 어디서 나온 말인가요??? 기출문제같은것만 봐도 미분불가능한 함수가 즐비한데..
으음...충분조건인 것은 이해가 좀 됩니다.
문제가
실수 전체에서 정의된 함수 f(x) = ax^3 - 3x^2 + (a+2)x + d 가 감소함수가 되도록 하는 상수 a의 값의 범위를 구하여라. 단 (a=/0)
이것인데. 이문제를 풀때 제가
감소함수가 되야하니까 f'(x)<0 이어야 겠지? 라고 생각했어요.
그런데 해설에는 f'(x)<=0 이어야 한다고 되있길래 다항함수라서 그런거구나. 라고 생각했거든요.,,.ㅠㅠ 잘모르겠습니다.....ㅠㅠㅠ
일단 함수가 다항함수네요. 다항함수는 실수전체에서 연속+미분가능(이정도는 암기하셔야죠)이기때문에 미분으로 접근해봅시다.
f(x)가 감소함수가 되야하면 f'(x)가 실수전체에서 f'(x)<=0을 만족하면 됩니다.
어..책에서는 f'(x)<0이면 f(x)가 감소라던데.. 라고 생각하실수 있겠지만
f(x)가 감소함수이면 f'(x)<0 이란 명제는 f'(x)<0이면 f(x)가 감소라는 명제의 역입니다
한마디로 무조건 맞다고 할 수는 없다는 소리죠.(명제의 역 아시죠??)
문제는 f'(x)=0이 되는 경우도 생각해봐야한다는겁니다.
예를 들어 y=-x^3 의 그래프를 생각해보세요. f'(0)=0 이지만 이 함수는 실수전체에서 감소함수죠
그러므로 ‘f‘(x)=0이면서도 증감이 변하는 경우가 있다‘는 경우가 생기므로
등호가 붙는거죠
이해가시죠??