부정방정식 질문입니다.
게시글 주소: https://orbi.kr/00028363375
문제)두 정수 a, b에 대하여 x에 대한 이차식 x^2+(3a+1)x+2a^2-b^2이 완전제곱식이 되도록 하는 a, b의 순서쌍 (a,b)의 개수는?
-시발점 수학(상)
저는 이 문제를 풀때, 완전제곱식이 되려면 '2a^2-b^2'이 일차항의 계수의 반의 제곱이 되어야 한다는 성질을 이용해서 풀었습니다.
현우진 선생님께서는 위의 이차식이 완전제곱식이라면 ( )^2 형태이므로 ( )^2=0이라고 치면, 중근을 가질거니까 '판별식=0' 이라고 두고 푸셨습니다.
현우진 선생님의 풀이가 이해가 조금 안되ㅅ qna로도 질문드려봤지만 돌아온 답변은 '가정일뿐이다'라는 것이였습니다.
제가 궁금한 점은, 어떻게 =0이라고 가정하고 풀 수 있는지 입니다.
혼자서 이걸 이해해보려고 함수로 생각해봤습니다. y=위의 이차식 꼴의 이차함수를 말이죠.
그리고, 이차함수의 함숫값이 0인 경우를 생각해보니까, 현우진 선생님 풀이대로 풀어도 문제가 없다고 느껴집니다만, 이차함수가 x축과 만나지 않을 때도 있기 때문에 헷갈립니다...
명확하게 설명해주실 분 계신가요??
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이거 해설지 다 소화하려면 생윤 공부를 국어보다 많이해야 할 것 같은데 어떻게...
-
왜 클릭?
-
D-181 0
국어 - 유기 수학 1. 시발점 기하 스텝2 Theme 6~15 2. 시발점 워크북...
-
서로 찐친 이상의 관계인거 좀 부러운듯 직장 동료인데도 진짜 친한가족같은
-
생윤 2회 (2505) 15
1컷 47 딱 걸침 예술윤리 기억안나서 틀려버렸네요 그래도 낫배드 굿굿 복습 꾸준히 해보자
-
이로운 수2 삼 6
서점 갔는데 설맞이가 없.. 6평이후에 올해버전 사야겠당
-
32만원대에 그냥 무조건 오를 것 같아서 사려다가 잠들고 일어나니 33만원대라 괜히...
-
5일차 2
-
한 명이랑만 마음이 통하면 되는 문제긴 하잖아 근데 그게 말처럼 쉽진 않은거같다...
-
누구랑사귀지
-
혹시 약뱃중에 4
전약제 오시는분 계신가요…??
-
주길래 다운받았는데..앱깔라네 그냥 유빈에 올라오는거 받을까
-
기백기백ㅠㅠ 오늘한거 4규기하 13개 Vortex수2 15개 로비스트 pro 10문제
-
역학 애매하게 틀리고 맞는데 그냥 일주일 올인땡기고 대비하는게 어떰요
-
내꺼아닌 내꺼같은
-
선수 단원이 따로 있나요:
-
20250516 1
회사를 그만두긴 해야겠다 아무리 몸부림 쳐도 시간이 없다 누군가는 좋은 직장 버릴...
-
40점대 이상이면 3등급은 아니겠죠..?.?
-
비 호감임 2
멋짐
-
5모 지1지2 6
50 50인데 전혀 기쁘지 않음 ㅋㅋ
-
와퍼 세트 하나 + 불고기와퍼 단품 2개 ㅁㅌㅊ?
-
찜질방 입갤 5
가성비 고트
-
자료 출석 계속해서
-
확실하게 더 날리기
-
저는 오늘 느꼈습니다..
-
하사십 무난할줄 알고 노래 들으면서 시작했는데 한두곡 듣고 바로 이어폰 빼버린......
-
최빈값도 92점 최댓값도 92점..
-
예전꺼긴 한데 쉬운 시험 + 하나 찍맞으로 7점받음
-
다들 저녁 먹고는 뭐 공부하시나요? 독재인데 저머먹고 나서 하는 공부에서는 머리 다...
-
하..
-
대가리 진짜 부수고싶다
-
6평 개 쫄림 3
개념 못 보고 셤장 갈꺼 같음
-
롤 1판만 ㅎㅎ
-
N티켓 복습 2
N티켓 시즌 1 다 풀었는데 2회독 문제모음에 틀렸던거나 애매한 것 들만 다시...
-
ㅈㄱㄴ 그리고 혹시 작년 재탕 많나요?
-
답지를 안보고 풀고싶은 문제인데 대가리를 굴려도 안풀리는 문제 고통스럽다
-
합니다.
-
신택스 강의를 듣기 시작했는데요, 풀이 하실때 영어를 한국어로 해석해주십니다, 근데...
-
한의대를 가고 싶어서 가는 새끼가 어딨냐? 의떨 치떨 해서 가는 거지 ㅅㅂ
-
시놉시스 3회 3
23분 50 1컷 45라던데 47정도 될것같다 싶음 작년 6평은...
-
비가와 16
바람까지부러!
-
점심 먹는다 1
ㄷㄱㅈ
-
대 867기 수료 10
goat
-
이거 가끔 로그아웃되면서 필기 다 날라가는데 왜이런건가요 ㅠㅠ
-
오순 3
-
오 뭐임 18
사실 스블할때 220722 어려워서 넘겼는데 바로 풀리네 이제
-
탕 18
-
심차, 사차 '그래프'의 특수성은 지난 수년간의 기출에서 빈번하게 준킬러, 킬러...
-
평등견임.
-
어떻게 축제라인업이 최예나 qwer 투어스 윤하지? 우리는 돈을 어디다쓰는것이야
판별식을 쓰는 것은 방정식이라고 가정한 다음에 계산하는 거고요, 그래프를 이용해서 함수로 나타내는 것 역시 좌표평면상에서 y=0 (다른 말로 x축)과의 교점이 하나만 (실근은 2개, 서로 다른 실근은 1개(일명 중근)) 나오도록 만드는 겁니다. 둘 다 일종의 가정(if)입니다... 잘못 푼 것은 아니고요...
님이 접근한 이 식이 완전제곱식이 되려면 2차에서 1차항 계수의 절반의 제곱이 상수항의 제곱이 되는 형태로 푸는 것은 가정없이 가장 authentic하게 접근한 겁니다... 역시 이 풀이만 맞는 것도 아니고요...
수학은 관점에 따라서 자유롭게 변신할 수 있어야 합니다. 단, 그 변신이 논리적으로 잘못된 것이 없다는 전제 하에서요...
그런데 위의 이차식이 0이라는 값을 가질 수 없다면, 가정이 정당하지 않은 것 아닌가요?
가정이 정당하지 않은게 아니고요 완전제곱형태가 불가능하다는 결론이 나오겠죠... 실수체에서요...
방정식 꼴에서 완전제곱형태 말씀하시는 거죠?
( )^2=0 이 꼴이요.
예... 미지수가 포함된 방정식이라면 복소수체에서 따질 때에는 무조건 2차방정식의 근 2개는 존재하지만 실수체에서만 따지는 경우라면 있을수도 있고 없을수도 있습니다...
이렇게 가정해서 푸는걸 처음봐서 그런지... 익숙하지도 않고 별로 와닿지가 않네요ㅜ
아직도 이해가 안되요
수학 기법상 가장 광범위한게 행렬하고 방정식입니다... 식에서 성립하는 거면 방정식에서도 성립합니다. 방정식에서 성립한다고 식에서 성립하는 것은 아니고요... 이 말인즉슨 식에서 성립안하는 것처럼 보여도 방정식으로 놓고 보면 성립하는 경우도 존재합니다...
저 위에서 0을 가질 수 없을때는 완전제곱형태가 될 수 없다고 말씀하셨는데, 그렇다면 판별식=0을 활용할 수 없는 것이 아닌지요?
x^2 + 2ax + a^2-2a 이런 식이 있다고 하고 이게 완전제곱식이 되려면
1차항의 계수 절반의 제곱인 a^2 = a^2-2a이면 되겠죠... 그럼 a=0이 나오고 본식은 그냥 x^2이니까 성립합니다. 그런데 a가 0이 아니면 본식을 완전제곱식으로 만드는 a는 존재하지 않는거죠... 즉, 방정식으로 놓고 판별식을 쓰나 그냥 완전제곱꼴 변형을 하나 차이가 없다는 겁니다...
이제서야 생각이 났는데, 완전제곱식은 무조건 0이라는 값을 가지게 되있네요!
예를 들어 (x-a)^2이라는 식은 x=a일때 0을 가지듯이 말이에요.