2월 10일(금)
게시글 주소: https://orbi.kr/0002749297
*단원: 수1 지수로그, 행렬+수2or미통기 미분(문이과 공통)
*예상정답률: 80%(가형기준)
*정답은 비밀글로 부탁드립니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
훌륭한 사업가가 되는법??
-
고려대 너무 조아
-
하아아아악 고양이가 이김
-
카톡 어차피 안와서 넣어논거임 ㅋㅋㅋㅋㅋ
-
집에서 과제할때만 필요한거임? 아님 매일 챙겨야되나?... 노트북 들고 두시간 통학...
-
라이브는 강의비는 저렴하던데 교재나 컨텐츠 이런거 다하면 보통 얼마나오나여 개학하면...
-
문과로 0
바꿀건데 확통노베면 미적은 그대로하는게 나을까요 미적을 잘하진않지만 확통은 아예노베라
-
현실에선 국숭세 부경인아곽 이 라인이 몇프로인가요? 4
한 15프로 하려나
-
좀 과한가 삼성 정품 65W 트리오 충전기임
-
이정도면 아싸히키맞냐?
-
흐흐흐ㅡㅎ
-
나도 자야겠네 13
-
기대된다
-
잠이 안 옴 9
진짜 어캄
-
아 자다가 깸 17
ㅈㄱㄴ
-
못버티겠다 15
자야지...
-
정혼 당함 3
2학년 1등해서 받은 교육감상 상장 엄마가 카톡 배사 했는데 우리동네 사는 어떤...
-
동물배틀 on 8
고려대 호랭이랑 한양대 사자랑 싸우면 누가이길거같음?
-
다 님들이 만드시는거에여?
-
솔직히 어린시절부터 내 이름 별로 안좋아했는데 모 고닉이랑 장난삼아 이름바꿔보니까 둘한테 다 좋아보임 13
그냥 이름바꾸고 싳다 진짜로
-
현재 모고 국영수 435에 탐구는 제대로 봐본적도 없는 그냥 공부 안하는 인생망한...
-
이제자러가야지 4
큰일남일곱시반에일어나야되는데 다망했어
-
뭐가 더 낫지 15
커피 vs 몬스터
-
맨전드 캬
-
여행이 땡긴다 2
미드나잇 인 파리 극장에서 봤는데 여행가고싶다
-
크하하하하
-
오야스미 4
네루!
-
방향이 잘못되면 성적이 안 나옴?
-
야식 ㅇㅈ 10
불닭큰컵+핫바
-
똑같이 푹 쉬었는데 왜 토트넘은 부상 복귀하고 우리는 멀쩡하던 4명이 사라져요???
-
제 전적대가 전문대라 학점이 거의 만점에 가까운데 괜찮은 학교에서 3후반~4점대...
-
버그겠지
-
언제 어디선가 꼭 되돌려 받을 수 있길 바랄게요 오르비언들 좋은 밤 되세요
-
저번에 시킨 지점은 고바순 조각을 작게 해줘서 소스 찍어서 한입에 먹기 좋았는데...
-
숏컷하면 이상하게보려나 11
머리감기 귀찮아서 졸업사진 찍고 숏컷하고 싶긴한데… 좀 이상하게 보려나요?
-
닉네임 뜻 15
노래제목에서 따왔어요
-
맛있으면 우는 고양이
-
ㅎㅎ
-
여친 생일 선물 .. 10
추천좀 해줘용ㅇ..ㅜㅜ
-
브라마굽타 3
브라마굽타
-
마지막 기회)파리비 레어 사시는 분 1만5000덕 드림 9
여기서 안 팔리면 걍 안고 삶
-
댓글 제일 먼저다는 사람의견에 따르겠소
-
ㅎ 아 트레블당하는건가?
-
2월도 절반이 지났군 10
-
연고대 서성한이 한성대, 삼육대처럼 약술형논술 시행으로 바꾼다면 어떻게 될까?
-
안녕하세요 올해 21살된 05년생 남자입니다 다름이 아니라 24수능을 친후 지잡대를...
-
인사해주세요 3
반가워요 선생님,, 오늘도 머리에 잡음으로 가득해서 잠이 안 오네요.,.
-
동아대 논술 0
왜 동아대 논술은 없니? 신한대, 강남대 약술형 논술 있잖아
1
정답ㅊㅊ
1번
정답ㅊㅊ
혹시 1번인가요?...
혹시 1번인가요?...
혹시 1번인가요?...
혹시 1번인가요?...
혹시 1번인가요?...
혹시 1번인가요?...
정답ㅊㅊ
오늘도 문제감사합니다 3번인가요??
오늘문제는 자신이없네요 ㅠ
어제 문제 풀이는 안올려주시나요?
일단 답은 아닙니다ㅜㅜ
어제 풀이는 문제가 간단해서 따로 준비하지 않았는데... a=-2, b=2가 나올거에요
어제문제는 맞앗네여..
전 계산해보니 a^2+b^2=1 이 나오는데... 그럼 말이 안되는거죠?
a^2+b^2=1맞아요
그 다음에 문제에서 요구하는 로그식을 loga^2b^4로 나타낼 수 있으니(두 문자 a,b가 모두 양의 실수이므로)
그 식을 연립해서 최댓값을 구하면 됩니다
어 저기까지 다햇는데..... 그래도 모르겟네요 ㅠㅠ
loga^2b^4=loga^2(1-a^2)로 놓고 a^2를 한 문자로 치환하면 그 문자에 대한 삼차식이 나오죠 물론 범위는 0보다 크고...
그 다음에는 미분을 이용하여 최댓값을 찾아주시면 됩니다
1번 나오네요 휴...맞겟죠이번엔
수고스럽게해드려 죄송합니다
네 맞게 하셨습니다ㅎㅎ 죄송하긴요ㅎㅎ 오히려 제가 고맙죠
감사합니다 내일문제도 기대하고잇을게요
1요 ㅋㅋ 걍 산술기하네요 ㅋㅋ a^2 + 1/2b^2 + 1/2b^2 = 1 에서 a^2 = 1/3,b^2 = 2/3
역시 굇수님ㄷㄷ 물론 정답이구요!
1번?
a^2 + b^2 = 1을 이용해서
log a^2b^4 의 최댓값을 구하는거 맞나..요?
네ㅎㅎ 맞게 하셨습니다
1번이요
1번이요!! 맞나??ㅋㅋ
1번이요...엄청 간단한 문제 아닌가요?
1번 맞나요? 맞으면 아래 '단원'때문에 맞은 듯하군요 ㅋㅋ; 미분이라고 안적혀잇엇으면 생각이 많이 힘들었을 ㄷㄷ ;
1번
x제곱+ y제곱/2+ y제곱/2=1 해서 산술기하평균으로 구했어요
다른 풀이도 있나요?
비밀글로 해주시는게 ;;
한 문자에 대해서 나타낸 후 미분으로 극댓값을 구하는 방법도 있습니다
1번이요
미분해서 극대극소로구했어요
1번이요,,!
아 답 써놓고 보니 윗댓글에 답이 있네요;;;ㅠㅠ
1번
11111
dxdy님부터 전원 정답이요ㅋㅋ
헉?? 어떻게 푸나요.. 수능치고도 어언 몇개월이 지나니 보이지가않네요;
우선 a^2+b^2=1이 나오죠
그 다음에 문제에서 요구하는 로그식을 loga^2b^4로 나타낼 수 있으니(두 문자 a,b가 모두 양의 실수이므로)
loga^2b^4=loga^2(1-a^2)로 놓고 a^2를 한 문자로 치환하면 그 문자에 대한 삼차식이 나오는데요, 물론 0보다 큰 값을 갖구요...
그 다음에는 미분을 이용하여 최댓값을 찾아주시면 됩니다
1번요
정답ㅊㅊ
답 1번이요..
정답ㅊㅊ
매일 수리문제 연재한다고 하시더니 작심삼일인가요?
월~금 입니다
앗 넹 ㅋㅋ
zzzz
푸..풀이 좀 부탁드려요.. ㅠㅠ
우선 a^2+b^2=1이 나오죠
그 다음에 문제에서 요구하는 로그식을 loga^2b^4로 나타낼 수 있으니(두 문자 a,b가 모두 양의 실수이므로)
loga^2b^4=loga^2(1-a^2)로 놓고 a^2를 한 문자로 치환하면 그 문자에 대한 삼차식이 나오는데요, 물론 0보다 큰 값을 갖구요...
그 다음에는 미분을 이용하여 최댓값을 찾아주시면 됩니다
우선 a^2+b^2=1이 나오죠
그 다음에 문제에서 요구하는 로그식을 loga^2b^4로 나타낼 수 있으니(두 문자 a,b가 모두 양의 실수이므로)
loga^2b^4=loga^2(1-a^2)로 놓고 a^2를 한 문자로 치환하면 그 문자에 대한 삼차식이 나오는데요, 물론 0보다 큰 값을 갖구요...
그 다음에는 미분을 이용하여 최댓값을 찾아주시면 됩니다
답은 3번입니당
아닙니다ㅜ
ㅈㅅ 1번이요 ㅠㅠ 왜그랬지
정답이에요ㅎㅎ
1번!!!
정답ㅋㅋ
1
1번 ㅇㅇ