회원에 의해 삭제된 글입니다.
게시글 주소: https://orbi.kr/00019274293
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅆ1발
-
핀터레스트에서 퍼와서 참교육 박제 당했으면 좋겠다 고 말하면 안되겠져
-
ㅠㅠㅠㅠㅠㅠㅠ
-
본인 ㅇㅈ하면 1
ㅈ같이 생겼다고 어딘가에 박제될듯
-
드디어봤다 ㄹㅈㄷㄱㅁ 화이팅 ㅋㅋ
-
인증메타 좆같네 0
꼬우니 제가 오르비를 끄겠습니다
-
ㅇㅈ 5초삭 6
ㅌㅌ
-
맞팔 3
하실분
-
넌 의대 가라.. (예의상) ㄱㅁ 공부 잘 할 것 같아요 (이모티콘)
-
ㄱㅁ소리 들어야지 ㅠ
-
맞팔 7
해주시면 안될까요..
-
올어바웃 미니 0
시대 김연호t 커리 타고 있는데요 비유전(+막전위/근육)만 자투리 시간에 볼 용도로...
-
특히 강민철을 듣고싶은데 너무비싸고볼륨이커서 그냥재수끝나고듣거나해야지
-
서강대에잇으셈 걍
-
진심임
-
강평 ㅋㅋㅋ 6
수 “강평” ㅋㅋㅋㅋㅋ
-
몇년생같음?
-
옆모습 ㅇㅈ 18
사골 재탕 ㅈㅅ함다 질려도 이해해주세용
-
한번만 더 이상한 멘트들고 게시물 올라왔으면 축구화신었다
-
탐구 이제 막 시작했는데 지1 사문 이란 말이주 개념 최소 언제까지 다 끝내놓는게...
-
투표좀 1
둘중 하나만 택해야함 시대 드가는거면 쌩재수 해야함
-
더 이상형이 번따하면
-
이정도면 새르비는 안해도 되겠지
-
기만하면 0
제가 고백 공격해서 혼내드림
-
ㅇㅈ메타임? 21
나도 참전
-
ㄱㄴ?? 제발 되면 좋겠다
-
롤 노잼임 너무
-
어떤 선지에 과몰입하다보면, 뇌가 그 선지를 정당화하기 시작하는데 그래버리면 더이상...
-
어디부터 어디 라인까지를 말하는 건지 모르겠는 사람은 거수.
-
아기고양이가 됨
-
셀렉스 사먹는데 이거 ㄱㅊ함?맛은 있는거같은데
-
잘자요 2
야레야레
-
옵붕이 졸림 1
잘꺼임
-
스펙평가좀 10
키 2cm 2등신 iq20 우유빵 잘먹음 엉덩이로 이름씀
-
여돌 vs 남돌 12
보통 어디가 더 인기 많나요
-
* 자세한 문의는 아래의 링크를 통해 연락 바랍니다....
-
internal server error 한번만 더 뜨면 3
뭐 할 수 있는 건 없긴 해 개발팀 좀 어케 해봐요
-
냥줍 ㅇㅈ 5
괭이
-
ㅇㅈ 21
본거 또보고.
-
장기자랑 나가서 랩하고 받은 수능지리 goat상
-
못생긴 여자보다는 이쁜 여자가 좋지
-
쓰레기대결 4
매일음주함
-
겸손 기만 적당히 좀 해라 진짜 아오 이제 열받네 어느정도 겸손은 좋은데 누가봐도...
-
친구로선 좋아도 이성친구로선 별로? 술 평소에 자주하고 좋아하지만 술에 약해서...
-
2020 2022 2024 2025
-
내 질문글에 댯글 좀 달아주렴...
-
ㅇㅈ하면 3
안 돼요
-
난 왜...
전 멍청한가 보네요. 글 열심히 쓰신 것같은데
하나도 이해를 못하겠음
이해하기 어렵게 쓰여진 글이에요 ㅠㅠ 전제되는 내용들을 하나하나 다 설명하면 글이 너무 길어져서 ㅠㅠㅠ
보기가 두 명제를 반대관계로 제시하고 있다는 사실로부터 존재함축은 바로 추론됩니다. 각 명제의 참 여부와는 아무 상관이 없습니다.
보기는 반대관계에 놓인 명제에 대해서 모두 거짓일 수 있다고 말하고 있습니다. 학생이 존재하지 않는다면 주어부가 공집합이 되어 고전논리의 관점에서 두 명제는 나란히 거짓이 됩니다. 무엇이 추론된다는 것인지 모르겠습니다. 존재함축이란 전칭긍정이든 특칭긍정이든 전칭부정이든 특칭부정이든 아무튼간에 무엇인가가 참이 될 때 존재가 함축되는 것입니다.
학생이 존재하지 않는다면 보기에서 반대관계에 놓인 두 명제가 모두 참이 됩니다. 전건이 거짓이기 때문입니다. 하지만 반대관계는 두 명제가 모두 참이 되는 것을 허용하지 않습니다.
그것은 고전논리학의 관점이 아닙니다. 부울 이전의 고전논리학은 주어부가 공집합일 경우 명제는 무조건 거짓이라 간주합니다. 정언명제가 참이 되기 위해서 주어부는 공집합이 아니어야 합니다. 유니콘은 동물이다 - 따위의 명제는 고전논리학의 관점에서 거짓입니다.
모든 유니콘은 동물이다와 어떤 유니콘은 동물이다는 반대관계에 놓여있습니다. 그러나 두 명제는 모두 거짓입니다 (고전논리학의 관점에서). 말씀하신 것은 고전논리학에 들어맞는 이야기가 아닙니다. 고전논리학과 현대논리학의 가장 큰 차이는 주어부가 공집합일 떄 명제를 어떻게 처리할 것이냐에 있습니다. 부울을 기점으로 관점이 갈립니다.
보기의 두 명제를 각각 P, Q라고 하겠습니다. 두 명제가 반대관계에 있으므로 가능한 경우의 수는 다음 세 가지입니다.
1. P가 참이고 Q가 거짓(존재함축을 전제)
2. P가 거짓이고 Q가 참(존재함축을 전제)
3. P와 Q가 모두 거짓
문제가 되는 것은 3입니다. 3은 말씀하신 것처럼 학생이 없는 가능세계를 전제합니다. 전통논리학에서는 해당 명제들이 참이라는 것이 존재함축을 전제하지 해당 명제들이 반대관계에 있다는 것만으로는 존재함축을 전제하지 않습니다. 반대관계에 있는 두 명제가 동시에 참만 아니면 되기 때문입니다. 그런데 3에서 학생들이 없는 가능세계를 전제하면 전통논리학에서 P와 Q는 모두 거짓이고 이 경우 반대관계의 성립과 아무런 모순을 일으키지 않습니다. 따라서 보기는 반드시 존재함축을 한다고 볼 수 없습니다.
보기가 존재함축을 하지 않는다면 선지 3번 역시 존재함축을 한다고 볼 수 없고 그렇다면 전통/현대논리학의 관점과는 상관없이 선지 3번의 두 명제가 모두 거짓인 경우가 존재합니다.
제가 이해한 바로는 이런 결론을 도출하신 것이 맞나요?
거추장스러운거 필요 없이 무조건 아님~
기념품좌가 팩트폭행 들어가신다~!
의견 감사합니다. 다만 1은 허수아비 공격의 오류입니다. 제가 1을 전제하지 않았기 때문입니다. 굳이 고전논리학을 따질 필요도 없이, 그러한 논의는 ③의 '어느 세계에서든'을 만족하지 못하기 때문에 의미가 없습니다.
2도 마찬가지입니다. " P와 ~P 모두에서 학생이 존재한다는 사실을 전제하는 일은, 그것들이 둘 다 거짓이 될 수 없다는 지문 내용을 무시하는 일입니다."라고 하셨는데, 학생의 존재를 전제하지 않았습니다.
그리고 이러한 반론은 배중률과 모순관계를 헷갈리시는 데 기인한 것 아닌가 싶습니다. 모순관계인 진술 중 하나는 참이라는 것이 배중률이지, 제시된 문장이 모순관계여야 한다는 식의 서술이 없습니다.
마지막 문단에 대해서는 제가 아래 링크 예상되는 반론2에서 충분히 설명했다고 생각합니다.
http://dotheg.com/221400173453
모순관계인 진술 중 하나는 참이라는 것이 배중률이지, 제시된 문장이 모순관계여야 한다는 식의 서술이 없습니다 -
그런데 기술자님께서 3번 선지가 맞다고 논증하신 과정을 살펴보면, "모든 학생은 연필을 쓴다" 와 "어떤 학생은 연필을 쓰지 않는다" 의 두 문장 가운데 하나는 배중률에 의해 참이 되며 제 3의 가능성은 없다는 이야기로부터 논의를 시작하고 있습니다. 배중률에 의해서 두 문장 가운데 하나가 참이 되려면 두 문장은 P ~P관계여야 합니다. 저는 3번선지의 두 문장이 모순관계가 아니라는 이유로 기술자님의 주장을 반론하는 것이 아닙니다. 기술자님께서 모순관계로 세팅해놓은 두 문장이 모순관계가 아니라는 이유로 반론하고 있는 것입니다.
3번 선지의 '어느 세계에서든' 에서 임의의 세계는 학생이 없는 세계도 포함해야 합니다. P U ~P = U가 되지 않는다면 P와 ~P가 모두 거짓이 되는 가능세계가 존재하게 됩니다. 그것은 모든 가능세계에서 P ~P중 하나는 참이어야 한다는 지문의 주장에 반합니다. 학생이 없는 세계는 얼마든지 가능하며, 포괄성에 의해서 그와 같은 가능세계는 존재합니다.
학생이 없는 가능세계에서 라면 모든 학생은 연필을 쓴다와 어떤 학생도 연필을 쓰지 않는다가 모두 참이 되죠. 학생이 없는 가능세계를 상정하는 것은 보기와 정면으로 충돌합니다.
학생이 없는 가능세계에서는 모두 거짓이 됩니다. 부울 이전의 고전논리학에서는 주어부가 공집합이면 명제는 경우불문하거 거짓이라 이야기합니다. 이에 대해서는 본문에서도 이 글의 댓글에도 누차 되풀이하여 이야기하였으니 참고 부탁드립니다.
그렇다면 학생이 0명인 가능세계에서는 모든 학생은 연필을 쓴다 어떤 학생은 연필을 쓰지 않는다 모두 거짓입니다. 이는 고전 논리학의 논리법칙중 하나인 배중률에 어긋납니다.
그러니깐 제 글의 요지가 P : 모든 학생은 연필을 쓴다 의 ~P가 어떤 학생은 연필을 쓰지 않는다가 아니라는 것입니다. 죄송한데 제 글을 다시 읽어주시길 바랍니다. 지적하시는 내용들이 전부 본문에 있는 내용이라서, 그것도 가장 핵심적인 비중으로 상세하게 언술되어 있는 내용이라서 그렇습니다.
순환논리입니다
글을 읽어주시기 바랍니다. 정말 죄송하지만 글을 읽지 않고 댓글을 다시면 뭐라고 말씀드리기가 곤란합니다.
지금 p ~p 가 모순관계가 아닌 이유로 주어가 공집합인 경우의 반례를 들 수 있어서라 하셨는데 그것을 배중률로 반박하니 또 p ~p 가 모순관계가 아니라 반박하시면 순환논리입니다
작성자님의 반론은 크게 2가지입니다.
첫 째, 학생이 존재하지 않으면 '보기'의 명제가 모두 참이 된다는 것. 그러나 '보기'의 명제는 모두 거짓이 됩니다. 이것은 이해황님도 동의하는 부분이며 그냥 그 자체로 팩트입니다.
둘 째, 학생이 0명인 가능세계에서는 모든 학생은 연필을 쓴다 어떤 학생은 연필을 쓰지 않는다 모두 거짓이다 - 이것은 사실 반론이 아니라 저를 도와주시는 겁니다. 제 글을 읽어보셨다면 아시겠지만, 상기 사실은 제 글에서 가장 주요한 근거로 활용되고 있기 때문입니다. P ~P는 배중률을 만족해야 합니다. 그런데 작성자님처럼 ~P를 설정하면 배중률을 만족하지 않습니다. 따라서 ~P를 배중률을 만족하도록 제대로 설정해야 합니다. 그런데 계속 저한테 배중률을 만족하지 않는데요? 하시면 저는 제말이요 제가 그럤잖아요를 반복할 수 밖에 없습니다.
P : ∀x(Px->Qx) & ∃x(Px) 라면,
~P : ~∀x(Px->Qx) ∨~ ∃x(Px)
여야 한다는 이야기입니다.
(P는 제가 특칭긍정으로 했습니다만 무엇으로 하든 이야기의 맥락은 같습니다)
같은 내용으로는 더 이상 말씀드리지 않겠습니다.