읭미? 왜 계속해봐도 벡터 답이 안나올까나요.
게시글 주소: https://orbi.kr/0001541893
좌표평면위의 두 점 O(0,0) A(2,1)과 타원 (x-2)^2/4 + (y-1)^2 = 1 위의 동점 P에 대해 벡터 OA와 AP의 내적 OAºAP의 최댓값을 M이라 할때 , M^2=?
아까부터 4라는것만 나오네요. 답지에는 코사인싸인변형 (x-2)/2 = cos♭ 해서 풀라고하고 ㅡ,ㅡ(수험장에서 이게 생각나려나)
일단 전 P(x, y)로 해서 접선으로 구했는데 자꾸 M=-2가 나옴.. 뭐가문제죠?
아 , 답은 17 이에요
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
물론 손실보상,경합,헌정사,과징금,인허가의제 같이 노잼중의 노잼만 공부하는 헌법...
-
흔한가요
-
하.......오늘은 꼭 이겼으면 좋겠네
-
거절하고 나옴 호감많이쌓였겠지 히히 그리고 수학 4등급에서 만점권까지 올린게 엄청...
-
제발 꼭 하고 싶어
-
수능 국어 지문 여러 개 올려놓고 이런 식으로 글 써 "줘" 하면 지문 뚝딱일 듯
-
획통 과탐으로 의대 뚫리나요? 과탐은 아슬아슬하긴 한데 1이 뜨긴 합니다 국어는...
-
과외알바를 생각하시는 분들을 위한 매뉴얼&팁입니다. 5천원 커피값에 미리 하나...
-
미친개념 완강, 수분감 수1 끝, 수2랑 확통은 하는중../6모 전까지 확통은...
-
학사졸업인데 대기업에 쌩신입으로 입사하기 가능할까요? 요즘 공대도 취업이 힘들다고...
-
해설을 어카지 챗gpt보고 써달라고 해볼까
-
past and future cant change the past
-
좋구만
-
김승리 김동욱 2
자퇴생이고 내년 수능까지 보고 있어요 이번년도 김동욱 수국김, 스위치온, 일클,...
-
제 자녀이름을 하니로 할건데 한자를 모르겠어요
-
종강안하나 0
할때됐는데
-
대학가면 여친 생긴다 했으니까..
-
네 저는 나약한 것입니다 고2때 모고는 다 백분위 98정도에 이번 3모 좀 많이...
-
벚꽃이쁘다 10
-
차라리 N제 1권이라도 더 볼까요 어삼쉬사 난이도 많이 풀고싶은데 강사들 입문 N제를 풀까
-
딸 이름 정함 15
으흐흐
-
4번 연속 다른 감기
-
2기가 넷플 독점이었는데 1기3기가 내려가면서 2기까지 삭제 된거구나.... 2기...
-
지인선N제 5
학교에서 홍보하는중입니다 고민하는애들한테 추천해줘요 깔게없어서
-
나만 어려움...? 작년엔 술술 푼 기억이 나는데 지금 수1 1강 풀었는데 앞에도...
-
오른쪽이
-
시즌3는 존나어려운데 시즌4는 할만한거같음 전반적으로 드릴3가 드릴4보다...
-
높은 확률로 저보다 수학 잘하십니다. 적정시간은 50~70분입니다. 애초에 선택이...
-
OVS의 약자는 Over victory ebs 즉 승리를 뛰어넘는 ebs로...
-
김과외에 후기 6명 받고 수수료도 꼬박꼬박 내서 4레벨인데… 여전히 과외는 발품...
-
식물샵 가는중 4
룰루
-
[동양철학] 지각에 대한 김창협의 주장(p.25) : 22-7, 19-6 격물치지에...
-
다음화 내용이 줄거리가..... 1기로 끝나는 내용인가
-
이제 진짜 잔다 1
ㅂㅂ
-
띰 6듣는 허수인데 기출 같이 병행중이거든요 근데 원래 같으면 못푸는 문제...
-
얼버기 3
-
진짜 발상 하나는 최고들이네 ㅋㅋㅋ
-
예를들어 미적풀때 기하 시험지에 있는 여백을 연습장처럼 사용해도 될까요?
-
강의량이 진짜 엄청많네..
-
극우 지지층서 ‘윤 어게인’ 급속 확산…국힘 ‘역학구도’ 영향 촉각 1
윤석열 전 대통령이 4일 헌법재판소의 전원일치 결정으로 파면되자 극우 지지층...
-
대통령 무한루프 2
일각에서 현직 변호사들이 법리적으로 윤석열 후보자 등록가능하고 대선 출마 가능하다고...
-
와따 잘생겼노
-
1컷에서 안정1 0
만드려면 뭘 해야할까요… 그냥 문제 벅벅하라는 강기원쌤 말 듣기?
-
핫도그 4500원 도랐노 2500원이면 적당하구만
-
이감 2회 1
93점이네 흐무
-
1번 너무 튀나 근데 좁 튀고 싶은 마음이 있어
-
일단 난 30대 통역사 틀딱임 며칠전에 출장 차 베트남을 다녀왔는데 거기는...
-
공통반과 정규반은 6모 이후부터 합쳐지는 건가요? 만약 합쳐지면 두 반 모두 똑같이...
훔... 타원정의도 안쓰는 상태에서 좌표놓고 길이를 구해라니 무슨이런한심한문제가있나염;;
벡터의내적은 도형의 평행이동과 관계없이 일정하므로 편의상 평행이동하겠습니다.
(x,y)->(x-2,y-1)로 평행이동하면
점 O는 (-2,-1), 점 A는 (0,0)으로 이동합니다.
타원은 x^2 /4 + y^2 = 1 로 이동합니다.
벡터 OA = (2,1) AP 는 타원의 중심을 시점으로 타원위의 한 동점을 종점으로 하는 벡터로, (2cos t , sin t) (단 , t는 0에서 2파이) 로 나타낼수 있습니다.
OA와 AP의 내적은 4cos t + sin t 로 삼각함수의 합성에 따라서 Max = 17^1/2, min = - (17^1/2)임을 알수있습니다.
(Max)^2=17 입니다.
앗! 평행이동 안하고 걍 해버려서 오답이 났던거네요 감사합니다.
음. 직접 풀어보지는 않았지만,
생각으로는
내적 = 길이 x 정사영된 길이
로 해서 보면, 직선OA 에 수직인 기울기갖는 타원에대한 접선 구하셔서,
원점에서 그 접선이랑 직선 OA와의 교점사이 거리 x 선분OA길이
하시면 나올것같은데;
보실지 모르겠지만.. ;;
내적성질로, 삼각치환 없이 풀수도 있네요.
작년 기출문제 활용하면
타원에 기울기가 -2인 접선을 그어버리면 됩니다(단 접선의 y절편은 1보다 크죵...)
그러면 선분 OA의 길이 곱하기 A로부터 접선까지의 거리를 구하면 답이 나오는데...
선분 OA의 길이는 루트 5이고, A로부터 접선까지의 거리는 루트5분의 루트17이니까 M=루트17 제곱하면 17이요
제가 기울기가 -2까진 했었는데 깜빡하고 평행이동 안한채 접선공식쓴 위험한 짓을 했어요...
삼각치환이 더 괜찮은듯