억지로 우겨넣어 만들어 본, 미분계수 관련 허접 문제들...
게시글 주소: https://orbi.kr/0001494920




누군가 질문한 개념에 답변하다가 떠오른 문제들입니다. 뭔가 창작욕이 막 솟구쳐서 만들어놓긴 했는데, 이것 참 후덜덜하네요.
분명 반응이 9:1 의 비율로 갈려서 9는 욕을 하고 1은 무반응을 보일 것이라 생각됩니다.
[문제 1] 다음은 누군가 미분계수의 개념에 문제제기를 한 내용을 정리한 것이다.
입니다. 여기서 이런 의문이 발생합니다: 과연 이 값만을 평균기울기라고 불러도 되는 것일까요? 예를 들어서, 이 극한 대신
를 고려하면 안되는 걸까요? 혹은 개성적으로
를 고려한다든가, 이것도 아니면 더 특이하게
를 고려하면 안되는 걸까요?
이제 실수 전체에서 정의된 함수 f(x)가 x = a 에서 연속이라고 하자.
(1) f(x)가 x = a 에서 미분 가능하고 그 미분계수가 f'(a) = L 일 필요충분조건은, 함수
가 h = 0 에서 연속인 것임을 확인하여라.
(2) (1)과 동일한 가정과 표기법 하에서, 임의의 두 양수 p, q에 대해 항상 다음 부등식이 성립함을 보여라.
(3) 함수 p(h), q(h)는 h가 양수일 때 항상 양수값을 가지며, h = 0 에서 연속이고 p(0) = q(0) = 0 이라고 하자. 이때 (1)과 동일한 가정과 표기법 하에서, 식
이 h→+0 일 때 f'(a)로 수렴함을 보여라. 그리고 이 사실을 활용하여, 위 문제제기에 대해 짧게 답변해보아라.
[문제 2] 실수 전체에서 정의된 함수 f(x)가 x = a 에서 연속이라고 하자. 그리고 서로 다른 두 실수 p, q가 주어져 있다고 하자. 마지막으로, 극한
이 존재하고 그 값이 L이라고 하자.
다음의 일련의 문제들은, 이러한 가정 하에서 p와 q가 어떤 조건을 만족할 때 f(x)가 x = a 에서 미분가능하게 되는지를 살펴보는 과정이다.
(1) f(x)가 x = a 에서 미분 가능하면, L = f'(a) 임을 보여라.
(2) p나 q 중 하나가 0이면, f(x)가 x = a 에서 미분가능함을 보여라.
(3) p = -q 이면 f(x)가 x = a 에서 미분가능할 필요가 없음을 반례를 통해 확인하여라.
다음은 함수의 연속에 대한 짧은 글이다.
마침내 19세기에 이르러, 칼 바이어슈트라스(Karl Weierstrass)라는 독일의 수학자에 의해 극한이 엄밀한 수학적 언어로 재정립되게 됩니다. 그의 극한의 엄밀한 정의는 소위 엡실론-델타 논법(ε-δ argument)이라고 불리는데, 여기서 엡실론(ε)이나 델타(δ)는 그리스 소문자로써 수학에서 전통적으로 작은 양을 가리킬 때 자주 사용하는 문자입니다. 여기서 그 논법의 전부를 소개하기는 힘들지만, 적어도 부분적으로 그 아이디어를 전달하는 것은 가능합니다.
그의 엡실론-델타 논법의 주된 아이디어는, 한없이 다가간다는 식의 모호하고 동적인 문장을 정적인 방법으로 풀어 쓰는 것입니다. 그는 기발하게도 '한없이 가깝다'라는 논리를 '가깝다는 것에 대한 어떤 기준값을 도입하더래도, 두 값의 차이가 결국 기준값보다 작게 된다' 라는 논리로 바꿔치기하였습니다. 이는 비유하자면 마치 다음과 같습니다. 우리는 더 작은 물체를 보기 위해서 그만큼 더 배율이 좋은 현미경을 써야 합니다. 하지만 만약 아무리 배율이 좋은 현미경을 써서 어떤 물체를 보려고 해도, 그 물체가 점점 줄어들어 결국 그 현미경으로 볼 수 없을 정도로 작아진다면, 우리는 그 물체가 한없이 작아진다고밖에 이야기할 수 없을 것입니다.
이러한 아이디어에 의하면,
라는 모호한 문장은,
라는 좀 더 수학적인 문장으로 바뀌게 됩니다.
이를 참고하여, 나머지 문제들에 답하여라.
(4) 어떤 양수 M에 대하여, 함수 φ(x)가 |x|≤h 일때 항상 |φ(x)|≤ M 을 만족한다고 하자. 그리고 실수 r이 |r| < 1 을 만족한다고 하자.
이때 |x| ≤ h 이면 무한급수
가 항상 수렴하고, 부등식
을 만족함을 보여라.
(5) |p| > |q| > 0 이라고 하자. 이때 함수 φ(h)를
로 두자. 또한 r = q/p 로 두자. 그러면 임의의 h에 대하여 다음 식이 수렴하고, 등호가 성립함을 보여라.
(6) 문제 조건에 주어진 극한 조건은 정확하게 φ(h)가 h = 0 에서 연속이라는 내용이 된다.
문항 (5)의 조건과 표기법을 모두 따를 때, 문항 (4)~(5)와 위의 읽기 자료를 참고하여 다음 사실을 증명하여라:
그리고 이를 이용하여, 문제 조건 하에서 |p| > |q| > 0 이면 f(x)가 x = a 에서 미분가능함을 설명하여라.
(7) 모든 결과를 종합하여, 문제 조건 하에서 f(x)가 x = a 에서 미분 가능할 필요충분조건이 |p| ≠ |q| 임을 보여라.
만들고 나서도, 이거 고등학생 용으로 만든 게 맞는 건지 참 의심이 가네요.
죄송합니다... 제 능력으론 이 정도가 한계였어요 OTL
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
주변인 증언에 따르면 대입보다 편입이 쉽긴한데 막 성인이 되서 대학맛을 봤는데도...
-
근데 계속 오르비에 염불 외듯이 글 쓰고 그러는거 보면 단순히 부를 이룰 방안과...
-
내가 앙 채가게
-
1. 지구를 못해서 다른 과목으로 튀었는데 불안하거나 2. 튀었는데 성적이...
-
쫄려서 그냥 구경만 하기로 했다
-
6시간 공부 성공! - 7시간 하면 책을 빼앗길 예정이에요. 1
제목이 이상하죠? ㅎㅎ 말 그대로입니다. 하루 순공시간 6시간 확보에 성공했어요!...
-
킬캠 2회스포있 2
222 진짜 한번씩 더 풀었다
-
다른건 모르겠지만, 그 대책이랍시고 어떻게 무작정 눈귀 틀어막고 무시하라 할수가...
-
댓글들 보면 나라가 소멸하길 바라냐, 돈이 인생의 다냐, 니네 부모는 금수저냐...
-
뉴런은 0
1.기출하고 들어야된다 2.들으면서 병행
-
1시까지 2시간동안 했어 너무 힘드러
-
난이도가 이상해..
-
확통 선택과목만 7문제 보면 9모 수능중 뭐가 어려웟음 2025 공통말고
-
에 나 의 넣어보라는데 최신 상품 -> 최신의 상품 안되는 거 같은데 됨.. 언제...
-
골딱이탱커한테젠야타모아쏘기슛~ 하 화작기하사탐너무좋아
-
과외알바를 생각하시는 분들을 위한 매뉴얼&팁입니다. 5천원 커피값에 미리 하나...
-
진짜 좀 괴상한데
-
그사람의 뇌에는 "어떤 멜로디는 좋은것" 이라는 정보를 담고있다고 본다 그러니까...
-
고기집에서 일하면서 월 100정도 벌엇는데 진짜 힘들었음 걍 말이안됨
-
수능완성 선지인데요 테일러도 ’인간은 물론 동식물도 자신의 고유한 목적을 지향하는...
-
정말 많이 하는군아 ,,,
-
독해 속도 1
갑자기 독서 속도가 느려졌는데 왜그러는걸까요 예전에 비해 독서를 더 생각하면서...
-
7등급임 화학 영어 생명 국어 일본어 다 7등급인데 어떡함 정시할까 참고로 모고도...
-
애초에 화자가 다리를 건너가면서 물리적 거리가 멀어지지만 심리적 거리는 멀어지지...
-
가기싫으어
-
이정수대기풀력다 0
오예
-
첫 번째 근거: 행동의 변화화자는 계속 차를 몰고 나아가다가([C], [D])...
-
음... 모론?
-
그냥 포기하면 편해요 남과의 비교는 불행의 시작
-
career low
-
불국어불수학불영어 킬러배제속신기루였나
-
다들 고논쓰자.
-
미소년 미소녀가 훨씬 부럽다
-
재수하고 좀 감잡아서 오~ 할만하네 생각했는데 “어림도없지 가형 회귀ㅋㅋ“ 시전할거같은데
-
문돌이 신소재 2
통통3등급 문돌이가 신소재가면 빡센가요? 글고 통통인데 미적가산3퍼 차이 큰가요?
-
이거 수능난이도면 몇번예상하시나요?
-
이 말에 대해서 어떻게 생각하세요?
-
어제 고딩때 수학학원 같이다닌 애 만났는데 "나 언매를 망해서 6모 국어 4등급이야...
-
아무도 좋은음악을 만드는방법을 가르쳐주지 않는다.. 그렇단말은 좋은음악은 그냥...
-
킬캠2회 6
허수가 푸는데 1회보다는 쉬운듯 단 킬러번호대를 구경도 못함
-
미적은 무난한데 표점차이 좆버그
-
이것저것 말고 0
한 강사 커리만 쭉 타도 수학2는 받을 수 있으려나…?
-
응응..
-
그때당시엔 못해서 못풀었지만 지금은 30빼곤 다 할만함 근데 30만 좀 그런...
-
차피 애 못가져서 11
메타에 끼질 못하겠군 내 생김새가 자연 피임약이다
-
인강이 없던 세대라 독학이든 학원이든 정석을 깨는 게 미션이었는데 다른 책이 잘...
-
흠냐뇨이..
-
adhd판정받음 1
허허.. 이걸 20대중반에 알다니.. 치료받으면 올해 수능 잘볼수있겠지?...
논술고사를 보는 기분이네요. 내공이 후덜덜;;
sos님 죄송한데 수학과 관련해서 몇가지 여쭈고 싶은게 있는데..
괜찮나요?ㅠㅠ
물론이죠 -ㅁ- 단, 수학 공부법을 물어보신다면 저는 뭐랄까 할 말이 별로 없어요;;;
아 공부법 말구요.. 대학교 수학과요.
제가 지금 수시 때 수학과를 쓸까 생각하고 있거든요..
근데 제가 의대를 생각하다가 수학과를 쓴다고 하니까 부모님께서 적잖이 당황하시네요;; 아무래도 보장된 학과에서 갑자기 순수학문쪽으로 간다니까 놀라신듯한데..
수학과를 갔을 때 전망이나 진로는 어떤가요?;;
응용쪽으로 빠진다면 생각보다 갈 길은 많다고 생각합니다만, 순수쪽은 역시 힘들긴 하죠. 수학이야 다른 이공계 분야처럼 랩실에 목매달아야 하는 처지는 아니지만, 그래도 지도교수의 역량이나 개인의 퍼텐셜, 공부량, 그리고 심지어 운에 의해서도 크게 좌우되니까요.
음........
지금 쓸데없는 걱정이긴 하지만,
제가 일반고학생이라.. 설수통하면 과고생들 중에서도 수학 잘하는 학생이 오는 곳이어서..
만약 합격한다하더라도 좀 걱정이 생기는데요.. 이게 극복할 수 있겠죠? -_-;
개인적으로 공부를 해 보면서 느낀 건데, 만약 학문에 뜻이 있다면 남들과 경쟁해서 이기는 걸 생각할 필요가 없습니다. 정말 자기가 즐기고 또 노력하면 됩니다. 뭔가 비현실적이고 일반론적인 답변같지만, 정말로 제가 배우면서 느낀 겁니다. 남들과 자신의 격차에 신경을 쓰기 시작하는 순간, 학문을 하면서 얻는 행복보다 더 큰 불행함이 자신을 덮어버리거든요. 그런 마인드 하에서 행복을 느낄 수는 없지요. 결국 한 번 사는 인생을 즐겁고 자신을 바라보며 살아야 할 텐데, 만약 그런 즐거움을 학문에서 찾기로 결심했다면 정말로 남들은 신경쓸 필요가 없습니다.
물론, 최종적인 목표가 학문이 아닌 다른 곳에 있으며 수학을 이용하려는 것이라면 또 이야기가 달라지지요. 음, 그런 방향으로의 현실적인 이야기 - 즉 학점 - 에 대해 말씀 드리자면, 확실히 경시를 준비했거나 특목고/영재고/과고/민사고같은 곳에서 온 친구들이 대체적으로 앞서고, 또 그 hierarchy가 쉽게 뒤집히지 않습니다. 이런 친구들, 그리고 특히 IMO를 준비해봤던 사람들은 이미 수학적인 마인드에 익숙한 것도 있고, 또한 공부를 함에 있어 깡이 있고 진득하게 붙잡고 두들겨 패서 결국 원하는 바를 이뤄내는 데 숙련되있으니까요. 적어도 교육과정 상에서는 뭔가 하나를 이해하기 위해서 짧게는 몇 시간, 길게는 며칠에서 한 주를 넘겨서가면서까지 붙들고 고민하거나 할 수 있는 경험을 할 수 있는 기회가 전무하다시피 하니까요. 그런 차이를 극복하는 것이 쉽지는 않을 겁니다.
뭐 하지만 저같은 굼뱅이도 어떻게든 팔딱팔딱거리고 있으니, 결국 결론은 가 봐야 알지 않을까 하네요. =ㅁ=b
그럼 소스님도 응용쪽을 생각하시는건가요?
사실 교수직이 보장만 된다면 순수쪽으로도 가보고싶은데 그게 아니니까요..
아 저는 순수쪽 - 하지만 세부분야 자체는 응용에 가까운 그런 쪽 - 을 생각하고 있습니다. 제 성격에 기업같은 데 들어가기는 좀 무리라...
음.. 그렇군요
이거 참 어렵네요..
그냥 대학수학 중간고사 문제같네요ㅋ 고등학생이 자세히 생각하기엔 시간이 좀 걸릴듯해요 ㅎㅎ
으아 진짜 논술고사문제같네요 저 개념에서부터 극핝ㅇ의까지 ㅜㅜ 풀수있을진 미지수지만 풀고싶네요
4,5번이 너무 어렵네요 급수의 수렴판정법 써야 증명할수있는거아닌가요?
고딩문젠데 그런 대학교 기법을 쓸리가 있나요 ㅋㅋ 초심으로 돌아가셔야 할듯..
텔레스코핑을 이용해서 |p|와 |q|가 다르면 f(a+ph)-f(a+qh)/(p-q)h의 h->0일 때 극한값이 존재하면 미분가능함을 보인 거네요. 잘 읽었습니다.