난만한님 or 수리 잘하는 분 존재하시면 Help Me~!
게시글 주소: https://orbi.kr/0001285711
정적분의 치환적분법에서 x를 t에 관한 함수 x=g(t)로 치환할때, (2x^3-2=t 같은 게 이 얘기임)
x=g(t)는 일대일 대응이야 하므로, 반드시 항상 증가하거나 감소하는 그래프가 나타난다는데요...
반드시 일대일 대응이어야 할 필요는 없지 않나요?
x=g(t)로 치환할 때, t의 최솟값 최댓값을 각각 범위의 위끝과 아랫끝으로 지정해준 뒤에 치환적분법을 이용해서
계산하면 안 되나요?
왜 참고서에 위와 같은 설명이 쓰였는지 모르겠네요 ㅠㅡㅜ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
모두들 비켜라 크아악
-
아니국민연금생각하면딱히부럽지가않아
-
미적분 상담 7
1까지는 솔직히 절대 쉽지 않아서 현실적으로 수능까지 미적 2까지 열심히 해보는게...
-
지갑 안 갖고 나와서 어쩌지 하고 있었는데... 나 05년생 새내긴데...
-
3모 이거 ㄹㅇ임? 10
사실 제가 예상해본거임 생윤 120019명 사문 148762명 물1 34028명...
-
난뭐가좋은문제인지모름 안목이없음
-
저나이때로돌아가면상산고정문개박살내고홍성대전이사장님악수쌉가능인데
-
아이고 아이고
-
흐음 집에서 라면 끓여먹는게 나았으려나
-
도플러 효과는 파원의 속력이 파동의 속력보다 작을 때만 발생하는 물리적 현상입니다....
-
수시충인데 메디컬에 미련을 못버리겠네요.. 솔직히 작수 치고 더해도 안되겠다...
-
기만중에서 5
노베기만이 제일 긁혀요 아 오르비 노베 수준 더럽네 높네
-
올해는 4규s1 vs 빅포텐s1 뭐가 더 어렵나요? 0
작년엔 4규가 더 어려웠다는 말이 많던데 올해는 어떤가요? 그냥 비슷비슷한감
-
자전거타기 6
오랜만에 탔더니 힘들어서 포카리 500ml 순삭
-
그게 내 운명인 거시다...
-
국수(탐) 중에 추천 부탁드립니당
-
다음주부터 빡공할거야!
-
노베라서 울었어요... 풀이도 저능아 풀이라서 양해부탁드려요...
-
공부 의지 약하면 잠깐이라도 잇올 다니는 게 나을까요? 2
너무 비싸서 못 다니고 있는데 2~3달 정도라도 짧게 다녀볼까 고민 중인데 괜찮을까요?
-
절대 한끼에 다 못 먹는데
-
좀 많이 썻네
-
진짜 어쩔거임요
-
댓 개수로 증명해드림
-
공부해야해
-
진짜로 그런 이미지가 되버림 비호감이 느껴짐 뭘해야되나요
-
여기서 다들 개혁신당 뽑는다고 하는데 오히려 표 분산돼서 민주당이 뽑힐 거 같음..
-
세번은 읽어야지 글이 이해가 감 세번 안읽으면 댓에다가 개소리 씀
-
호감 오르비유저 0
너
-
오르비 대표 비호감 12
오이카와
-
사탐황님들 사탐런 재수생 훈수 한 번만 부탁드립니다.. 4
생윤 사문 둘 다 1등급 목표입니다 현재 둘 다 리밋으로 개념 1회독 돌렸고 생윤은...
-
수학은 천천히 풀자. 고정 100의 반열에 오르기 위해서 바꿔야 하는 태도 중...
-
섹준완 ㅋㅋㅋㅋ 4
으헤헤 내 배를 가득 채워 줘
-
재수 국어 1
국정원 보면서 기출 하나 풀려고 하는데 마닳 피램 마더텅 독서 문학 따로ㅊㅊ해즈세요
-
상상력과 시각적인 이미지의 활용 의외로 학생들이 이런걸 ㅈㄴ 못함 내가 말하는...
-
책 피뎊 말고 목차에서 제공한다는 전개년 기출 피뎊은 어디서 받을 수 있나요? 책에...
-
수2랑 달라도 너무달라
-
지우고 싶은데 나중에 다시 들어오고 싶음... 계정 1개만 만드는거 가능한가
-
고2 ㄹㅈㄷ 문제 14
...당신은 풀 수 있습니까? 저는 풀 수 있습니다. 몇 번을 봐도 거지같은 건...
-
어? 갔네.. 6
엥
-
정확히는 옆에서 살짝 앞인데 독재나 부라에서 이런 자리 앉았던 사람 견딜만 하셨나요?
-
영어 실모 끝
-
나 비호감이면 좋아요 18
-
굿나잇 4
진짜 잠
-
지금 고1들이 배우는 통합과학이요
-
3년+1개월
-
이매진살까 2
아무리 그래도 계속 유기하는건 아닌거같고 주간지라도 구해다 꾸준히 풀까
-
국어영어과탐이랑 수1,2공부는 한달정도는 ㄹ안해도 ㄱㅊ나
-
원점수 기준 국어 100-97 고정vs수학(미적) 100 고정 18
뮈가 더 어려움??
-
원래 강민철 - 문학, 비문학 커리 탔고 강기분 완강하고 3모 봤는데 국어 압도적...
기본적으로 합성함수 그래프그리는것에대해서 개념이부족하셔서그런것같아요 치환은 합성함수와 정확하게일치하는개념인데 그려보심알듯; 1:1대응이아니면 그런식으로 치환해서 그래프그리는것은 일반적으로말이안댐
뭐, 솔직히 고백하자면 딱히 일대일 대응이 아니어도 상관은 없습니다. 대신 시작점과 끝점만큼은 바꾸면 안되지요.
즉 적분 ∫_{from a to b} f(x) dx 가 있다고 할 때, x = g(t)로 치환을 한다면, g(t)는 적어도 개떡같은 함수면 안되고 (대충 미분가능하고 도함수가 연속 정도는 되어줘야 안심하고 쓸 수 있지요.) g(c) = a, g(d) = b 혹은 g(c) = b, g(d) = a 정도는 만족해줘야겠지요.