[이동훈 기출] 한 평면에 포함되는 3개의 공간벡터 (공도회 심층분석)
게시글 주소: https://orbi.kr/00012417177
이동훈기출_개념편_한 평면에 포함되는 3개의 공간벡터에 관하여.pdf
이동훈 기출문제집 atom 책 페이지
---
공도회로 알려진 수능 실전 이론에 대한 분석입니다.
이동훈 기출문제집의 부교재(무료PDF)로 제공되는
42개의 수능 실전 이론 중에서 마지막 주제에 해당합니다.
나머지 41개의 주제들은 7월 초 ~ 8월 말에 걸쳐서
이동훈 기출문제집 atom 책 페이지를 통하여
꾸준하게 제공될 예정입니다.
( -> http://atom.ac/books/3888/ )
---
공도회를 소재로 하는 문제는
평면의 결정조건 + 각의 크기의 최대최소
로 접근하는 정형화된 풀이가 존재합니다.
(사실 모든 수능 문제의 풀이는 공식화되어 있는 것으로 봐야겠지요.
교과서에 바탕한 전형적인 풀이를 적용하면 항상 풀리게 출제되니까요.)
일차결합의 관점에서 공도회를 해석하면
벡터의 정의, 연산부터 내적까지,
전 과정을 이용할 수 밖에 없으므로, 공도벡을 통합적으로
학습할 좋은 기회가 됩니다.
(만약 벡터가 평면의 법선벡터로 주어지면 평면의 방정식까지
포함하게 됩니다.)
사실상 공식화 된 이론으로 문제를 빠르게 해결하는 것도 중요하지만,
그 이론의 증명과정에 대한 이해와 연습도
수능 학습에 반드시 필요하다고 생각합니다.
실전에서 어떤 상황이 닥쳐도 헤쳐나갈 수 있는 힘을 키워야 하니까요.
이동훈 기출문제집에 수록된 모든 공도회 관련 문항의 해설은
위의 이론에 기반하여 작성되었습니다.
공도회에 대한 해석이 타 기출문제집과의 가장 큰 차이점이고,
위의 설명을 낯설고 어렵게 생각하는 분들도
적지 않은 것으로 알고 있습니다만,
사실 위의 이론을 알아두면 벡터의 내적 전반에 대한
이해의 폭을 넓힐 수 있습니다.
제가 기출문제집의 이론편을 만드는 이유는
이동훈 기출문제집의 해설이 어떤 통일된 관점과 이론에 바탕하여
작성되었는가를 보여드리기 위함입니다.
장기간에 걸친 수능/평가원 기출 해설 작업을 통해서
축적된 생각들을 체계적으로 보여드리고 싶은 욕심도 있습니다.
올해 여름에 무료 공개되는 42개의 실전 개념은 개정 과정을 거쳐서
2019 이동훈 기출문제집에 수록될 예정입니다.
학습에 도움이 되길 바랍니다.
감사합니다~ :)
+ 참고로 42개의 주제는 다음과 같습니다.
(01) 수학2(함수) 유리함수, 무리함수와 격자점
(02) 수학2(수열) 등차등비수열의 전형적인 문제 (+등차중앙, 등비중앙)
(03) 수학2(수열) 합에서 일반항 유도하기
(04) 수학2(수열) 수학적 귀납법으로 증명하기
(05) 수학2(수열) 발견적 추론 (수를 나열한다.)
(06) 미적분1(수열의 극한) 수열의 극한과 급수의 계산
(07) 미적분1(수열의 극한) 등비급수와 중등기하
(08) 미적분1(함수의 극한과 연속) 함수의 연속에 대한 전형적인 응용문제
(09) 미적분1(함수의 극한과 연속) 사이값 정리의 활용
(10) 미적분1(다항함수의 미분법) 미분계수와 도함수의 다양한 문제들
(11) 미적분1(다항함수의 미분법) 접선의 방정식 (+최단거리)
(12) 미적분1(다항함수의 미분법) 평균값 정리의 활용
(13) 미적분1(다항함수의 미분법) 3차, 4차 함수의 그래프 (+인수정리)
(14) 미적분1(다항함수의 미분법) 미분가능성 (+절댓값)
(15) 미적분1(다항함수의 미분법) 미분법의 방정식, 부등식에의 활용 (문과)
(16) 미적분1(다항함수의 적분법) 구분구적법을 정적분으로
(17) 미적분1(다항함수의 적분법) 적분과 미분의관계, 미적분의 기본정리에 대한 전형적인 응용문제
(18) 미적분2(지수함수와 로그함수) 지수로그함수의 수학1 내적 연관
(19) 미적분2(지수함수와 로그함수) 삼각함수의 수학1 내적 연관
(20) 미적분2(삼각함수) 삼각함수, 지수로그함수의 극한과 중등기하
(21) 미적분2(미분법) 역함수의 미분법 총정리
(22) 미적분2(미분법) 사이값 정리, 평균값 정리의 활용
(23) 미적분2(미분법) 합성함수의 연속성과 미분가능성
(24) 미적분2(미분법) 접선의 방정식 (+변곡점, 점근선의 관점)
(25) 미적분2(미분법) 초월함수 그래프 (+빠르게 그리는 방법)
(26) 미적분2(미분법) 이계도함수에 대하여 (+함수의 볼록성)
(27) 미적분2(미분법) 미분법의 방정식, 부등식에의 활용 (이과)
(28) 미적분2(적분법) 치환적분법, 부분적분법의 전형적인 응용문제
(29) 확률과 통계(순열과 조합) 합의법칙, 곱의법칙 (+수형도)
(30) 확률과 통계(순열과 조합) 조합, 중복조합, 순열, 중복순열에 대하여
(31) 확률과 통계(확률) 확률의 계산 (+밴다이어그램)
(32) 확률과 통계(확률) 확률의 전형적인 응용문제 (+개념정립)
(33) 기하와 벡터(이차곡선) 이차곡선의 정의와 중등기하
(34) 기하와 벡터(이차곡선) 교과서에는 없는 이차곡선의 성질
(35) 기하와 벡터(평면벡터) 벡터의 일차결합 (+개념정립)
(36) 기하와 벡터(평면벡터) 벡터 내적의 최대최소 (+상수변수)
(37) 기하와 벡터(공간도형) 공간도형을 관찰하는 법 (단면화, 정사영, 전개도)
(38) 기하와 벡터(공간도형) 공간도형 개념정립
(39) 기하와 벡터(공간벡터) 좌표공간 개념정립
(40) 기하와 벡터(공간벡터) 공간에서의 직선, 평면, 구의 방정식 (+위치관계)
(41) 기하와 벡터(공간벡터) 두 평면이 이루는 각의 크기를 구하는 3가지의 방법
(42) 기하와 벡터(공간벡터) 한 평면에 포함되는 3개의 공간벡터에 관하여
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
돌담병원 미친고래 goat
-
휴식
-
본인 옷 쇼핑 특 10
스스로의 의지와 선호로 사본건 단 한번 뿐...
-
나 좀 친절한듯 3
우울증 그 쪽지 나도 받았는데 으로서 복지제도 소개해줌
-
오르비언들 5
카와이 >.<
-
저랑 싸울사람 4
저 태권도 검은띠에 유도한달경력있음 줄넘기도 다이어트하면서 많이해봄
-
선생님은 갑자기 왠 4기가 나온다는거에요???
-
이응 발음할 때 가령 '아기' 발음한다 치면 서울 사람들은 [agi]인데 부울경...
-
우울감 -1
-
오버핏 맨투맨에 슬랙스 니트에 슬랙스 후드티에 슬랙스 슬랙스만 있으면 다됨뇨ㅋㅋㅋㅋ...
-
닥전인데 vs 아주대라면 어떻게 될까
-
아니면 여러명이 동일계정 쓰시는건가
-
컨텐츠관리자님 1
바보
-
컨텐츠관리자님 8
댓 달아주세요
-
물리1 대성 2
안녕하세요 이제 물1 시작하려는 예비고2입니다 지금 시작해도 늦지는 않았겠죠?...
-
첫 글이라 좀 떨리네요 고1 겨울방학, 고2 내신동안 수1,수2 2번 돌림 공부에...
-
이거 머지 7
이런거 처음 받아서 당황스러움 거절하긴 했는데 여기서 이러니까 황당하네
-
하여튼 웃겨 정말
-
이러면 댓글 달아주나?
-
오티때 옷 4
걍 무난하게 아니면 꾸며서?
-
수1,수2,미적 모두 개념은 끝냈고 뉴런도 듣긴 들었는데 안들은 그런 상태입니다...
-
오르비 24
오류비
-
흠 너무 날먹마인드인가
-
슬슬 옵치 질림 2
공부를 할 때가 됐군
-
존잘남들이랑 사귈수 있음 남자는 입구컷 당함 밑에 짤남과 사귀고 싶다
-
현재 물지 공부중인데 물리하면 안된다는 조언을 많이 들어서 고민되네요 성향은...
-
부대 높공이라도 건국대나 동국대 중높공이면 갈려고 하는 것 같기도 함 약간...
-
본인 추구미 = 카고 벌룬핏 데님을 필두로 한 스트릿... 근데 새터도 가야하는데...
-
오늘은 새르비 스킵 21
어제한 행동보니까 이제 죄송해서 못하겠음
-
나는 또 세상이랑 단절된다 전화 문자도 안 되는 먹통폰... 집은 와이파이도 안 돼...
-
내일도화이또 13
화이또
-
스피킹 양식 같은 거 있다는데 좀 공부해갈까... 읽기 듣기는 27은 넘길 수 있을...
-
잠깐보려 했는데 양성피드백마냥 볼수록 중독되서 접습니다
-
주변에 잘 사는 사람 있는데 열등감 죳대네 ㄹㅇ
-
전제가 성립한다는 가정하에... 현역입니다
-
세계사고 고2 내신 때 100 100 나오기도 했고 제가 생각하기에도 완전 제대로...
-
상상력 제로 4
등장 뭘 어쨌다면인가... 좀비 나타난다면 때려잡으면 되고.. 극s(그런거...
-
철학과 메인글 보고 고민해봄
-
악어오름 얼굴 논란 13
진짜 이건 논란 될만하다 어떻게 이렇게 생겼냐 진짜 에바지 ㅅㅂ.. 근데 솔직히...
-
자야징 5
다들 안녕히주무세요
-
일단 수시로 대학갈 생각이거든요.최저를 국어,영어,사탐 이렇게 3개로 맞추려고...
-
내년 설대 기공 0
올해 빵났으니까 내년에 컷 올라감? 보통 어느정도 올라감?
-
ㅎㅎ 0
나른한 오후
-
사실 하고 싶은 일이 전공이랑 별 관련없긴한데 그냥 잘 모르겠기도
-
하루종일 수능만 하는 재종에서도 언매 기준 53%는 1등급을 받지 못한다 심지어...
-
오티 못가면 친해지는데 지장이 있을까요?
-
검정 항공점퍼 카키색 카고바지
-
췌장암 같은거 뒤늦게 발견되고 막 다들 본인 죽는 상상 해본적있음? 근데 장례식에 부를사람이 없네
-
새터때 입고 간 복장 11
선 없는 아디다스 츄리닝에 후드티에 패딩 전날 귀국하고 3시간 자고 정신 없이 갔던 기억이...
![](https://s3.orbi.kr/data/emoticons/dangi/009.png)
감사합니다 드디어 나오는군요 ㅎㅎㅎ오래 기다리신 만큼 완성도 높은 원고로 보답하겠습니다. 감사합니다~ ^^
기출문제집 매우 잘 보고있습니다
이 책들을 산 후로 비로소 수학공부를 제대로 하고 있다는 느낌을 받았어요
감사합니다. 공부하시면서 의문이 드는 점이 있다면 언제든지 문의하여주세요. 더 좋은 책을 만들기 위하여 노력하겠습니다. ^^~
문제집 잘 쓰고 있어요. 좋은 자료들 감사합니다
![](https://s3.orbi.kr/data/emoticons/dangi/002.png)
감사합니다~ ^^![](https://s3.orbi.kr/data/emoticons/oribi/014.png)
존경합니다...!!!!![](https://s3.orbi.kr/data/emoticons/dangi/010.png)
칭찬해주셔서 감사합니다. ^^더 좋은 책을 만들기 위하여 노력하겠습니다.
내용 너무 좋습니다^^
![](https://s3.orbi.kr/data/emoticons/oribi/026.png)
감사합니다. ^^*