[정병훈T] 6평으로에피단다님의 21번 자작문제 해설
게시글 주소: https://orbi.kr/00011923126
2017년 4월 30일 6평으로에피단다 21번 자작문항 해설.pdf
안녕하세요. 오랜만입니다.정병훈선생입니다.현재 강남대성학원에서 수학을 강의하고 있고,올해에는 슈퍼파워N제시리즈 저자가 되었습니다. 여기 오르비 게시판에서 좋은 문제를 발견하였는데,제가 생각한 풀이방법을 언급하는 분들은 거의 없던 것 같아서,해설지를 한 번 만들어 봤습니다.6평으로에피단다님의 21번 자작문제 원본참고로 원본에서 f(x)의 정의구간을 x0인 범위로 제공하고, 이 범위에서 미분가능한 함수라고 제공하지 않으면, 조건 (나)에서 x0인 범위에서의 교점의 개수를 보장할 수 없어서, 이 부분만 문제를 약간 수정했습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
여백에 회음후 열전 만년필로 필사했음 불려가는거 아니겠지 ㅋㅋ..
-
럭키 77 0
https://orbi.kr/00072740989/ 좋아요 77 캬 좀 더 글을...
-
어디갈까요 성적 최우선 다녀보신분들 장단점도 기술해주심 갬사하겠습니다..!
-
친척형이 준 국어의기술책인데, 친척형은 오래전에 수능봤어요 전 언어와매체 선택자인데...
-
아오오오오오오오 1
오니
-
에엣
-
모교 6모정원 60명이면 모집개시당일 마감일까요?? 0
그렇겠죠...?? 학교 특성상 학교응시n수생 60명 훨씬 넘을 것 같은데...
-
안녕하세요 '지구과학 최단기간 고정 1등급만들기' 저자 발로탱이입니다. 지난 1년간...
-
지금 페이스면 6모전에 딱 개념기출 1회독 할꺼같은데 속도 올릴까요?
-
현역 공부 효율 0
3모보고 멘탈 나간 이후로 공부가 잘 안되고,,, 원래 이정도로 수학이 안풀리진...
-
같은 문제라도 풀이가 ㄹㅇ 눈에 띄게 좋아졋군 상당히 좋군
-
난이도 어떤거같나요? 전반적으로 드릴345보단 쉬운거같은데
-
둗옹
-
독서 고1 기출 2
손실 보상 청구권, 실어증 얘네 풀어 보셨나요 하... 정보도 많고 용어도...
-
휴강인지 모르고 학교 갔네 카톡에도 동기가 톡 했는데 못 보고 도서관에 가서 중간 준비나 할까
-
어릴 때 이거 전집 읽었었는데 진짜 고전 소설 풀면서 엄청 도움된 듯
-
권태기가 온 내 일상에 흥분을 가져다주자
-
1960년대 부산대 화학공학과는 지금으로 어느정도였나요 ??
-
요즘 독감이 유행이래요
-
Fim풀면서 2
엄밀함을 많이 배우는 듯 실력이 부족해서 얻어갈 거 자체는 많았음
-
운문은 나름 치고 현대소설까지는 어떻게 어떻게 하는데 고전소설을 진짜 못 해 먹겠음...
-
사문 개념강의 다들었는데 다음 커리인 임팩트를 하는게 좋을까요 아니면 그냥 기출푸는게 좋을까요?
-
메일 접수는 갓갓갓인데 이건 점 죳죳죳이네
-
열 바로 내림 근데 열은 내려도 아직 힘드네
-
재수로 약대에 들어간 사람입니다. 현재 2학년인데 약대를 다닐수록 한번더...
-
깨달은거 3
학교서 눈마주치면 어색하게 지나쳐야되는 사람들이 꽤 잇다는거 학교생활하지도 않았는데...
-
뭐지진짜
-
생1이 탐구 17개 과목중에 3등급 맞기 제일 쉬움 그 이상은 근데 존나 어려움...
-
비갤에 저격올라온거 보니 농어촌메타니 여러 저격메타니 보고 혼자 또 도파민 터져서...
-
평상시에 속으로 혼잣말 많이하고 뭐 생각할때도 속으로 혼잣말 많이하고 공부할때도...
-
시모노세키 끝 7
이제 히로시마로
-
0.999... = lim(x->inf),(1-1/10^x)...
-
대 재 호
-
ㅈ됨...
-
나 물지 4, 5등급 근데 왜 사탐런 안하냐고? 2, 3등급 심지어 1등급까지...
-
부엉이 갔냐? 3
굿다이노
-
부엉이 갔다고? 0
드디어 눈을 떴구나 부엉이. 화2생2로 꼭 의대 쟁취해서 와라
-
2025학년도 단국대(천안) 입시결과(수시, 정시_의예, 치의예, 약학) 0
2025학년도 단국대(천안) 입시결과(수시, .. : 네이버블로그
-
앙ㅇ아아ㅏ아아아
-
지수법칙 외우라고 하는게 맞는거죠?
-
0이상 1이하의 선분에 존재하는 실수들은 선분을 이루는 점이라고 할수있음 그런데....
-
ㅠㅠ
-
또 줄었는데
-
0이상 1이하의 실수는 무한히 많음 0이상 1이하의 "선분"은 무한히 많은 점들로...
-
신촌 숨겨진맛집 11
?
-
짐 뺐네.. 정들었었는데 ㅜㅜ
와 미친.. 지렸다
선생님 질문이 있습니다
보통 변곡접선으로 풀리는 문제에 대해서는
전부다 기하적과 수식적으로 둘 다 관찰이 가능한가요?
아니면 한쪽으로만 나오게끔 하는 경우도 존재하려나요?
보통은 양쪽다 열어놓는 것이 기출의 선례인데 이 부분에 대해서 의견이 궁금합니다
수식으로는 모두 가능합니다. 기하적으로 보통 변곡점 접선을 언급하는 방법은 두 함수 중에 어느 하나의 함수가 1차함수 정도로만 예쁘게 출제해야 가능합니다.
다만, 효율성의 측면에서는 문제에 따라 판단이 다르므로, 어느 풀이가 더 좋다고 쉽게 단정할 수는 없습니다.
이번 같은 경우에는 도함수 자체가 쉽게 도출이 되었는데
예를들어 f=mx+n과 한점에서 만나도록 하는 m의 값을 구하라고 했을때 이 경우에는
도함수자체의 살근에 따라서 달라지니까 만나는 것을 기준으로 분할하여 사고하면 될까요?
{f(x)-n}/x=m으로 놓고, g(x)={f(x)-n}/x으로 고쳐서 푸는 게 쉬울 겁니다.
오히려 이 문제의 경우 해설 기준으로 모든 k에 대한 문제라서 k가 우변에 단독으로 있는 것이 모양이 좋으니 저런 식으로 해결하지 않은 것입니다.
아 제 질문은
선생님이 위에 잡으신 함수꼴로하고 미분을하게 되어 나오는 식을 통해서 원함수를 추론하고 그에따라 그래프를 그린이후에 교점의 갯수를 찾는것인데
이 경우에 도함수가 n에 의해서 확정이 안되기에 찢어서 일반적으로 사고해야하나요?
이 경우는 그렇게 하지 않아도 쉽게 도함수값을 도출가능하기에 저런식으로 원시함수 자체를 적분한것으로 이해하면 되련지요!
또 일반적으로 m,n이 실수 전체의 가뵤을 가지는 것이 일반적인데 어느때는 나눠서 잡고 어느때는 위에 해설한 방향으로 잡아야하는지 궁금합니다!!
아 저는 n값이 고정되어 있을 때를 m의 값의 범위를 구하는 문제를 질문한 건 줄 알았습니다.^^
둘다 변할경우에는 어떤식으로 식을 정리하는것이 좋을까요
둘다 변하는 문제는 나중에 언급되는 알파벳을 우변에 단독으로 두는 것이 좋습니다.
아 x로 나누게 되면 분할해서 따져야하는 것들이 더 많게되어서 그렇게 식을 조작한다고 생각하면 될까요?
정말 감사합니다 ㅠㅠ
x로 나누느냐 아니냐는 중요하지 않습니다. 먼저 언급된 문자가 먼저 결정되는 법이니까요. 예를 들어 m이 먼저 결정된 후에 n을 언급하는 경우에는 우변에 n이 있어야 m에 따르는 풀이를 할 수 있습니다.
여기 해설도 m이 k보다 먼저 결정되니, 우변에 k가 있는 것이 쉬운 것입니다.
아 조건 나에서 주어진 것이 m에 대한 식이 주어졌으니 k꼴만 남기고 다 옆으로 밀어버리는게 맞는것이라고 이해했는데 맞게이해한건가요?
맞습니다.^^

진짜 정말 감사합니다나 조건은 다시보니 16학년도 6평 21번과도 일맥상통하네요.. 저도 정말 많이 배워갑니다 감사합니다
바로 그 점 때문에 이 문제가 좋은 문제라고 생각했던 것입니다. 좋은 문제를 보여주셔서 감사합니다.^^
어 저도 처음엔 그래프로풀고 두번째는 수식으로했는데ㅎ 배워갑니다
읽어주셔서 감사합니다.^^
저는 (가)조건해석을 적분식을 F(x2)-F(x1)으로 바꿔준 뒤 x2-x1으로 나누어준 후 극한을통해 f(x)>=0이라고 해석해주면 (가)조건을 모든상황에서 만족시키는 결과라 생각해서 그렇게 풀었는데 옳은걸까요??! 뭔가 논리적비약이 있는것같아서..
올바른 풀이입니다. 비약은 없습니다.^^
보통 그렇게 미분계수의 정의로 풀면 역 증명을 평균값의 정리로 해줘야 필요충분조건이 되는데, 이 문제에서는 역 증명이 평균값 정리를 써야 할 정도로 어려운 게 아니라서 괜찮습니다.
사실은 가조건의 제 의도는 미분계수를 이용하는 그 풀이입니다
물론 증가함수임를 이용하거나 적분의 넓이에 의한 직관도 현실적인 좋은 대안이겠지요
사실 난이도를 소폭 하향하고자 우변을 x2-x1이라고 안둔거랍니다
난이도 하향의 마음은 제가 잘 이해하고 있습니다. 강대에서 현재 제가 들어가는 반 학생들은 알 겁니다. 최근에 이런 유형의 (제가 만든) 문제를 이미 강의했는데, 저 역시 인테그럴의 옆에 x2-x1은 없었거든요. 그리고 적분으로 내놓으면, 넓이에 의한 직관으로 생각하는 학생들이 있다는 것도 알고 있어서, 일부러 그쪽을 가능하게 만들기도 하는 것이지요.^^