[이동훈기출] 해설, 좋은점 ?
게시글 주소: https://orbi.kr/00011090263
이동훈 기출문제집의 저자, 이동훈입니다. :)이동훈 기출문제집의 해설에 대하여 궁금해하시는 분들이 있는 것 같아서, 이 글을 씁니다.우선 각 과목의 문제집과 해설집의 페이지 수를 비교해보면수학2 : (해설집)=(문제집)* 1.16미적분1 : (해설집)=(문제집)* 1.36확률과 통계 : (해설집)=(문제집)*1.14미적분2 : (해설집)=(문제집)*1.55기하와 벡터 : (해설집)=(문제집)*2.45(단, 해설집에는 순수하게 해설만 수록되어 있습니다.최근의 유행처럼 해설집에 문제가 포함되어 있지는 않습니다.)수학1, 확률과 통계는 문제집과 해설집의 페이지 수 차이가 거의 없지만,미적분1, 미적분2, 기하와 벡터는 해설집의 페이지 수가 확연히 많습니다.후자의 세 과목의 해설집의 페이지 수가 많은 이유는 다음과 같습니다.[미적분1](1) 등비급수 기하응용 : 서로 다른 기하적인 성질을 적용한 서로 다른 풀이 가능한 수록(2) 미분법 : 그래프의 개형에 대한 문제의 경우, 풀이가 두 가지 이상이면 다른 풀이 가능한 수록(3) 모든 단원에 대하여 교과서의 정의/정리/공식/법칙/성질을 이용하여 수학적으로 자세하게 풀이... 등등[미적분2](1) 삼각함수의 기하응용 : 서로 다른 기하적인 성질을 적용한 서로 다른 풀이 가능한 수록(2) 미분법 : 그래프의 개형에 대한 문제의 경우, 풀이가 두 가지 이상이면 다른 풀이 가능한 수록(3) 모든 단원에 대하여 교과서의 정의/정리/공식/법칙/성질을 이용하여 수학적으로 자세하게 풀이... 등등[기하와 벡터](1) 정사영 : 이면각의 정의, 정사영의 길이/넓이, 법선벡터의 내적에 의한 3가지 풀이 가능한 수록(2) 공간도형, 벡터 : (대부분의 기출문제집에서 제외된) 기하의 결정 조건에 의거한 엄밀한 설명(3) 공간도형, 벡터 : 공간도형 단원의 문제의 경우 벡터를 이용한 해석을 다른 풀이로 수록(4) 벡터의 내적 : 기하의 성질, 벡터의 성질, 좌표평면/공간의 도입에 의한 3가지 풀이 가능한 수록(5) 모든 단원에 대하여 교과서의 정의/정리/공식/법칙/성질을 이용하여 수학적으로 자세하게 풀이... 등등그리고 [확률과 통계] 과목의 경우(1) 경우의 수 : Case 구분의 풀이와 여집합을 이용한 풀이 가능한 모두 수록(2) 확률 : 확률의 덧셈/곱셈정리와 수학적 확률을 이용한 풀이 가능한 모두 수록... 등등갯수를 세는 문제의 경우에는, 과목에 관계없이, 가능한 여집합을 이용한 풀이까지 수록하려고 노력하였습니다.몇몇 난문의 경우에는 (예를 들어 2014학년도 B형 29번) 이동훈 기출문제집에서만 볼 수 있는 풀이와 참고를 수록하였습니다.예를 들어 2009학년도 공통 14번의 경우 아래와 같이 서로 다른 3가지의 풀이를 수록하였으며, 이 세가지의 풀이를 모두 수록하고 있는 기출문제집은 제가 알기로는 없습니다.예를 들어 2013학년도 9월 가형 29번의 경우에는 두 가지의 풀이를 수록하고 있는데, 두 번째 풀이는 대부분의 기출문제집에서 직관적으로 풀이한 것이 비하여, 이동훈 기출문제집에서는 삼수선의 정리를 이용하여 수학적으로 엄밀하게 설명하였습니다.올해 처음 내는 책이라 여러모로 부족한 점이 있습니다만, 해설 만큼은 굉장히 정성들여 쓴 책입니다.다양한 해설, 수학적으로 엄밀한 서술형 해설을 원하는 수험생 분들에게 어울리는 책이 되지 않을까 ... 하는 생각을 해봅니다.긴 글 읽어주셔서 감사합니다. :)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
설레발은 필패 2
잘본게 없는것같네 슈밤바
-
메디컬 과씨씨 14
어케생각함 셤기간이라 그런가 오만생각 다하고 있네 6년 같이 살아야하는데 가능?
-
아몰라 F받을래~~
-
죽겠다 7
하이고..
-
고1인데 중3때 아예 공부를 놨어서 중3수학을 거의 모릅니다. 이번에 시간날때...
-
기출->이해원->지인선 이 순서로 해야겟음
-
뉴런은 남겨놓을걸
-
전공시험 13시간 전 11
시험범위는 1장~6장 1장 스무스하게 끝 2장 벽 체감직전 상황
-
난 내신문제풀기싫다고
-
치대생들 답번 부탁해요 치대가면 안정적이라는데 대학생활은 원래...
-
모의고사 시험지 뜬거 보니 신유형 적중했어서 ‘오 개꿀‘이러고 갔는데 애가...
-
내년엔 진짜 과외 해봄 10
??? : 내년엔 진짜 과외 해봄
-
메이플이 재밌나 2
엘소드가 훨 재밌던데 ㅇㅇ…
-
쎈 0.8회독하면 1등급은 무조건 뜨는 학교들이고 모고 9~11번급 나오면...
-
핑크빈 무드등 7
귀엽지
-
태그로 치면 아카데미 착각 약피폐 빙의 회귀 정도가 될 것같음
-
1주차 등가속 어케 3분안에 해결하는게 손에 꼽냐 현타 씨게 오네
-
국정원->심찬우 1
국정원을 하다가 심찬우선생님 인강을 들으려는데 집에 국정원 기밀문서가 있어서 국정원...
-
작년 3~4등급 뜨던 과외생 오늘 중간고사 끝나고 아 쌤 저 망한거같아요.........
-
이제 어려운 거 잔뜩 가르쳐주고싶어
-
[칼럼] 90일만에 문디컬 가기 - 방향 설정의 중요성 2편 22
제목에 오류가 있었습니다. 생각해보니 2021 수능은 코로나때매 2주 늦춰져서...
-
윤동주-쉽게 씌어진 시 2연에 한 줄 시를 적어 볼까, 에서 설의법이 나타난건가요?
-
근데 왜 1시인건데
-
그 언기도 앞에 있는 슬램덩크체형 독수리보다 차라리 고잠녀 연잠녀에 연잠녀가 더 정감갈 지경이다 난
-
전라인다감.
-
수능 최저 2
형님 누님들 최저 수포함 2합8인데 지금 생윤 사문 둘다하고있습니다 선택과 집중으로...
-
행시나 볼까 1
안정성 개꿀..
-
들을 때마다 지림
-
SKY 인정 뭐 어느 정도 먹고 들어감 솔직히 문과 상위권 대학은 가성비 좀 많이...
-
빨리 과외생을 키워서 어려운 문제를 풀릴거야 준비하는 동안 나도 좀 재밌었으면...
-
보름달이 세번 뜨는동안 오지안앗어
-
지금생리통때매 누워있는데 질문받는다 무례한것도 ㄱㅊ
-
댓 좀 부탁드립니당 07이하//그것보다 나이 많음 ㅅㅊ) 정병호 더프 현우진 킬캠...
-
악보보고 쓱쓱 치고싶음
-
지인선 10회 14번 이해가 안가네요..
-
그때부터 음원 사재기가..
-
https://youtu.be/1-IuXdUYHMc?si=G_P5XvdVjL4dLtM...
-
학벌 올리는건 진짜 자기만족같음 어디 대학이나 취업은 계속 걱정이고 사람들 보면 또...
-
인강교재에 몇개 선별된거 빼곤 굳이 찾아서 풀필요는 업죠?
-
안녕하세요 칼럼대회 심사위원 인생은 초콜릿 상자입니다. 미루고 미루다 막판에 몰아서...
-
웹소설이나 써볼까 13
장르는 아카데미 후회 피폐 집착 순애 하렘 Ts 피카레스크 인외 회귀 전생 빙의 ...
-
레트로라고 하던가요? 어릴때 이런 느낌 노래 길가에서 많이 들었었는데
-
초딩때 6
학교에서 카드놀이랑 딱지치기 많이 했는데
-
뉴런+기출 다 보면 한완기 교사경 풀고 n제로 넘어가려 하는데 괜찮나요 지금 기출...
-
아예 노베는 아니고 지금 문학론 듣고 있는데 문개매 익스프레스로 빠르고 들어도 될까요?
-
반수 국어 0
작수 4 (70점) 문학 3개 틀렸고 독서에서 완전 썰렸음 말 그대로 맞은게 거의...
-
ㅈㄱㄴ
-
2023 킬캠 시즌 1,2 답지 있으신분 있나요? 12
있으신분 쪽지좀 주시면 감사하겠습니다.
-
어릴때는 그냥 다같이 모여서 놀고 헤어지는게 자연스러웟는데 어느순간부터 안껴주는...
잘풀고 있습니다!!좋은 교재 만들어 주셔서 감사해요:) 근데 댓글이 없네요 ㅠ
첫번째 댓글 달아주셨네요. ^^
1쇄에는 오타/오류가 있으므로, http://atom.ac/books/3888/ 에서 오류정정 꼭 확인하여주세요. 올해 수능에서 좋은 성적 받으셔서, 원하는 대학 가시길~ :)
안녕하세여 이과인데 미1까지 사려고 생각중인데 수열의 극한 파트까지 풀어보는게 좋을까요?
가형 응시자 분들의 경우에는 미적분1의 함수의 극한, 미분법, 적분법을 (특히 미분법, 적분법의 4점짜리 난문은 반드시) 풀 것을 권하고 있습니다. 수열의 극한과 급수는 선택적입니다. 급수 단원의 기하응용에서 다루는 중학교 과정의 기하적인 성질은 미적분2 삼각함수 단원의 기하응용에서도 다루고 있기도 합니다.
감사합니다~ :)
이동훈 선생님 안녕하세요? 선생님 기출문제집으로
나형 3권 사려구 해요. 혹시 미적분1에 (문과생이 풀면 도움 될)가형 기출문제도 포함되어있는지 궁금해요~
가형(이과)에서 출제된 다항함수의 미분법, 적분법 문제는 빠짐없이 미적분1에 수록되어 있습니다. 감사합니다~ :)