이차방정식의 해법 해설 + 평행이동할때 왜 점은 +a인데 그래프는 -a일까?
게시글 주소: https://orbi.kr/00010789384
안녕하세요. 일반청의미입니다.
이 칼럼은 이 글에 담긴 생각을 바탕으로 쓰게 되었습니다.
공부의 양은 어떻게 정할까? : http://orbi.kr/0008692499
공부의 양은 생각의 양과 같고, 생각과 고민은 질문에서 나옵니다!
그렇습니다. 그래서 질문과 답변 칼럼을 올려볼거에요
공신 방송 다녀온 후기 & 수학 칼럼 연재합니다. http://orbi.kr/00010768917
보신분 많이 없으실텐데..ㅋㅋ
오늘은 칼럼 요청이 들어와서 쓰게 되었습니다.
일단 저번주의 답을 첨부합니다.
매우 간단하죠..? ㅋㅋ
이제 오늘의 칼럼 띄워봅니다!
점 (a,b)를 x축으로 m만큼 평행이동하면 (a+m,b)가 되는데
왜 함수 y=f(x)를 x축으로 m만큼 평행이동하면 y=f(x-m)이 될까?
분명 점을 x축으로 평행이동 하면 x값이 늘어나는거 맞겠죠?
하지만 그래프의 x값은 왜 빼지는걸까요?
그래프의 모든 점의 x값이 늘어난것이 맞는데 말이죠.
많은 의견을 덧글로 달아주세요! 제가 생각하는 답은 다음 칼럼에 달겠습니다.
힌트를 드리자면.. 저 그림을 잘 보셔요! x값은 변할겁니다 x축 평행이동이니까요.
물론.. 제 답이 정답은 아니겠지만.. 꽤 설득력 있을거에요!!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
과외, 헬스, 데이트 무한반복 캬캬
-
저뿐인가요? 차라리 모고 돌릴때가 제일 집중 잘 되는거 같네요 ㅜㅜ
-
이번에 수능까지 염두에 두고 수학 과외 구하려는데 팁이나 에티켓 있을까요? 받아보신...
-
아니 음향 측심법 할때 당연히 왕복 거리니까 깊이는 속력 x 시간 x 1/2이겠지
-
지문에 나래이션: "A는 너무 힘든 상태에 있다." 라고 써있으면 나래이션을 통해...
-
좋아보여서 샀어요 인강 듣기도 시간 아까워서 틈틈히 읽어보기로 올해는 이거다
-
미친 하루 1
시험과 시험공부와 과제를 동시에 하는 날 ㅅㅂㅅㅂㅅㅂㅅㅂㅅㅂㅅㅂㅅㅂㅅㅂㅅㅂ
-
2년 동안 과외 받고 기출도 4회독 했는데 4등급이면 걍 구제불능 맞죠?
-
아는애가 툭툭 건드려서 뒤돌아봤는데 그 옆에 있는애가 대놓고 와 개못생겼다 이러더라 이게 맞는건가
-
단모음 외울때 4
학창시절에 기억나시나용 ㅋㅋㅋㅋ 저는 1번으로 외웠긴합니다 투표 ㄱㄱ
-
기저귀가 좋음 4
basis ear임
-
지금까지 뉴분감이랑 n티켓 시즌 12랑 이해원 n제 풀었는데 풀다가 제가 모르는...
-
난 굉장히 재밌었는데..
-
공하싫 0
수특풀기싫어어크아악
-
과외로 명품 살 생각하지말고 나도 돈모아서 주식 코인 인베스트먼트나 해야겠다
-
딸피라서 장난도 못치겠음 맨날 썼다 지움
-
더프 등급컷 2
어디서봐요? 나온게 확실해요????????? 화작 미적 물르 알려주세요
-
리버스 아이돌임
-
재수를 안하니깐..
-
PPT에 개 고양이 사진 자주보니까 공부하다가 사진보고 화풀림 그리고 교수님 설명에...
-
너무 잔인할거 같다
-
가능할까요? 7
도로랑 조급 가깝게 걷고 있었는데 차가 물웅덩이 밟고 지나가서 젖음 사과도 안하고...
-
듣기만 안틀렸어도 3,4덮 둘다 80중반인데 자꾸 두세개씩 나가네
-
다른 파트보다 유난히 귀류의 연속이고 내가 풀때도 현장에서 논리보다 시간으로 인한...
-
여동생 ㅋㅋㅋ 8
아이고
-
국어성적은 6 9 수능 97 95 97 이었어요
-
나도 성인이라고 17
병원왔는데 학교확인서 필요하세요?라는 소리를 아직도 들었음 몸도 아픈데 더 쓸쓸한 오후구만
-
조정식T 괜찮아 문장편, 어휘편 교재 작년이랑 많이 다른가요? 1
작년 교재 그대로 쓰려고 하는데, 내용이 많이 추가되거나 제거 되었을까요?
-
소설에서 2
대충 읽다보면 대화의 주체가 누군지 했갈리는데 "정시파이터는 성공한다." 나는...
-
이거말고 더 잘 표현할만한 사진이 있으려나
-
하사십 나왔네 0
드릴 가격 생각하다 보니까 합리적인거처럼 보이네
-
님들 4
나에대해 어디까지 알고있음? 댓글 ㄱㄱ
-
ㅈㄱㄴ
-
인터넷에서 너무 자기를 드러내는건 좋지 않다고 생각함 2
풀배터리 검사 올리고 느낀점이랄까요
-
7월에 일본이나 영국정도 가고싶은데 흠 같이 갈 오뿌이 있음?
-
적어도 수1은 고2기출 풀어보는거 정말 좋다 생각함 1
이전부터 강조한건데 수학1은 과목 자체가 살짝 old한 느낌이 있어서 다소...
-
막상 자기가 그 지방 사람이 아닌데 친척,부모님의 영향으로 그 지방 사투리를 쓰는...
-
50개 중에 43개정도 기출인듯 근데 다들 탈족한거만 틀려서 80점 넘고도 C 나오는건 아니겠지
-
다시 수능판으로 옵니다. 인설의 가즈아
-
수열보다 함수추론으로 나오는게 나은거같음 (이유는 그냥 내가 그게 더 잘맞기...
-
원래 독문언 순으로 풀었었고, 보통 35 / 30 나와서 10분 동안 언매 다...
-
과제도 아폴로랑 이것저것 자체교재들 많고 조교들이 과제 풀이영상 올려주고...
-
하 양말 어쩌죠... 11
비에 다 젖었어요 으악
-
여름방학 때 공수2(수 하) 수1 는 완벽하게 끝내고 수2는 기본기정도 다지고...
-
전국 날씨 예보 보는데 내가 어릴때 보던 익숙한 대구 땅모양이 아니라 위에다 가발...
-
15년 구형 ㄷㄷㄷ
-
어지럽다 9
중력을이겨내는힘이줄어든거같음 30도경사에서도넘어질까봐두려움 걸을때도계속비틀거리고
-
이런 사람들을 설득해야됨
-
https://www.bbc.com/news/articles/c5ygdv47vlzo...
-
고대 그리스 역사와 맞먹는 감동이 있다는 것이다..
원래 x값에 m을 더한 값을 대입해서 원함수의 값이 나오는 식이 되어야 하니까 그런가요??
맞습니다!
축의 이동
축의 이동은 어떤 개념인가요?
설명해주시겠어요??
간단히 이야기하자면, 도형은 가만히 있고 도형을 설명해주는 두 기저의 기준점 (축) 을 반대로 움직인다고 생각하는거죠.
사실 이해할 수 있는 얘기긴 한데..
교육과정에서는 축을 이동하는 법을 안배우긴 해요.
그래도 이해하기 좋은 설명이 될 것 같아요!
사실 교육과정 해설서에도 명시되어 있어요.
'도형의 평행이동에 대해 설명할 때에는 축의 이동을 통해 설명하지 않는다.'라고
다만 굉장히 직관적으로 이해가 되고 축의 의미가 무엇인지 생각만 해보면 바로 이해가 되는지라 ㅎㅎ
(x,y) = (a,b)(원래 함수 위의 점)
(X,Y) = (a+m,b)(x축으로 +m만큼 이동한 함수 위의 점)
(a,b) = (X-m,Y) = (x,y)
따라서 x축으로 +m만큼 이동한 임의의 x,y에 대해
(x,y) = (X-m,Y)를 넣어서 식을 정리하니까
결국 +로 이동했으나 부호는 -로 붙어 나오게 되는것
아마 첨에 배울때 이랫던거같은데 맞는지는 잘몰겟네요;
네 맞아요. 그게 교과서의 설명 방식입니다.
그 수식의 의미를 쉽게 설명하면 어떻게 될까요?

고1때는 그냥 그렇구나 하고 넘어갔던 기억이...(쭈글음... 명쾌하게 설명하기가 어렵네요. 생각을 해봐야겠어요...
저도 이 주제에 대해 많은고민했었는데, 제가 얻은 결론은 이렇습니다.
예를들어 정의역이 0이상 1이하인 함수가 있다고 칩시다. 이 함수를 x축방향으로 1만큼 이동시킨다는 것은 정의역을 1이상 2이하로 변화시킨다는것이에요. 하지만 치역, 즉 y값은 변하지 않아야 하죠. 이런 점을 고려하면 함수를 x축방향으로 이동시킬때는 정의역범위를 변화시키면서, y값은 유지시켜줘야해요. 그래서 정의역을 이동시키려는 값만큼 증가시키고, 그래프식 안에있는 x는 이동시키려는 값만큼 빼주는겁니다.
그런데 보통 함수에 대해 논의할때는 실수전체가 정의역의 범위가 되죠. 그래서 증가된 정의역범위가 드러나지 않고, 그래프에서 x가 x-m으로 변하는것만 보이게됩니다.
맞습니다..만 굳이 정의역을 제한하지 않아도 될것같아요
y값이 변하지 않는다는 말만 해주셔도 될듯합니다!
으어... 많은 분들이 생각을 올려주시네요.. 감사합니다!
모든 덧글이 다 옳은 설명이라.. 제가 뭐라 하기 어렵네요.
하지만 제가 생각하는 답은 한줄입니다! 꽤 설득력 있다고 저는 생각해요
저 식과 그림에서 간단한 특징 하나를 뽑을 수 있어요.
뭐랄까 마치 숨은그림찾기 하는 것과 같다고 봅니다.
굳이 이 개념뿐만 아니에요. 여러분은 개념을 깊이 생각하고 있나요?
이렇게 고민 해보신 적이 있으신가요?
저는 생각과 고민이 공부의 양이라 생각합니다. 생각과 고민은 이렇게 질문에서 생기게됩니다.
저렇게 개념에 대해 접근해보다 보면 정말 공부 많이 될것같아요... 수학적 직관력이 빵빵 터질것같은!
평행이동한 함수를 새로운 함수라고 생각하면 이 새로운 함수의 x에다가 뭘 집어넣어야 평행이동 이전에 함수값과 같아질까? 라고 생각해보면 기존 함수를 x 축으로 +m 평행이동한 함수가 새로운 함수이니 이 함수에는 x 에서 +m 만큼 빼주면 이전의 함수와 같은 값을 같겠구나 ! 라고 생각해서 새로운 함수 = f(x-m)
요로케 설명해보고싶네요
맞습니다! 다들 너무 맞는 말씀이어요.
다만 어려운 설명일 수 있어요.
사실 그렇다고 해도 어쨌든 자기가 이해할 수 있는 좋은방식으로 이해하면 장땡이죠.
결국 개념에 대한 고민이란건 최대한 쉬운언어로 받아들이는것.
그걸 사용하기 쉽도록 보이는것을 말합니다.
저도 이거 잘하는지 잘 모르겠어요 ㅎㅎ
덧글 달아주신 모든 의견이 맞는 얘기해주셔서.. 쓸게없네요ㅋㅋ
이번주 토요일 저녁에 칼럼 올리겠습니다.
참 간단한 의문인데, 헷갈릴법한 질문이기도 해요
전 칼럼의 질문은 이차방정식의 해법의 공통점입니다.
저는 10-가의 내용을 배웠습니다. 지금 수1 전 교육과정이죠
10-가에서는 일차방정식 다음에 이차방정식 단원이 있었습니다.
그것으로 유추해보면 이차방정식의 풀이의 핵심을 끌어낼 수 있었죠.
교과서만으로 의문을 갖고 해결하는 공부를 많이 했습니다.
그 과정까지 아울러 설명해보도록 하겠습니다.
생각과 고민이 공부의 양입니다.
교과서만으로도 충분히 공부할 것이 있어요.
그것을 여러 질문으로 전달하도록 하겠습니다