삽자루 킬러문제 나형 후기
게시글 주소: https://orbi.kr/0008829419
참여 절차
1. 해당문제를 검토한 후 아래 후기작성양식에 맞추어 오류나 난이도 및 전반적인 평가를 해주시면 됩니다.
2. 아래의 양식에 맞추어 활동하는 커뮤니티에 개시글을 올리신 후 블로그 모집공고글에 댓글로 주소를 복사하여 주십시오
후기 작성 양식
1. 분석자 기본정보
- 해당학년 : 1학년
- 계열(인문계, 자연계) : 인문계
- 경력사항 : 없음
- 지원경로 : 친구의 권유
2. 교재 기본정보
- 킬러문제(나형)
3. 장점
킬러문제 (나 형)을 검토하면서,
1. 수학의 교과과정 변경으로 인해 누락되었던 고난도 문제를 ‘적절히 변형해서 교육과정에 편입시킨 것’이 좋았습니다. 3번 문제가 이 경우에 해당하는데, 교육과정의 변동으로 학생들이 미처 접하지 못했던, 수능의 ‘킬러문항’들을 직접접함으로써 고난도 문항을 대비하는 데에 적합했다고 봅니다. 덧붙여서 3번 문항을 푸는 데에는 ‘사고의 전환’이 필요합니다. -x-6과 같이 직선 위에 대응되는 점을 일일이 구하는 것이 아닌, ‘해당 영역에 포함되는 점을 세로로 세는 방법’을 이용하면 문제가 간단하게 풀릴 수 있다는 점을 학생들에게 시사한다는 점에서 ‘문제 해결력 증진’에 이바지할 수 있다고 생각합니다.
2. 올해 평가원에서 킬러문제로 등장했던 30번 등을 변형해서 출제함으로써 평가원 출제 기조를 학생들에게 익힐 수 있게 한다는 점이 좋았습니다. 4번 문항이 그 경우입니다 4번 문항은 주어진 조건 중 로그식을 무리식으로 변형함으로써 ‘글로 서술되어 있지 않은 조건의 중요성’을 학생들에게 익히게 할 수 있습니다. 또한 올해 뿐만 아니라 기존의 수능과 평가원 ‘킬러 문항’들을 변형한 문제들도 좋았습니다. 흔히 우리는 기출문제를 반복적으로 풀어야 한다는 생각을 갖고 있는데, 아무 변형 없이 기존 문제만 반복적으로 풀게 되면, 문제에 적합한 풀이 방법을 고민하는 연습보다는 ‘어떻게 풀었더라?’ 회상하며 푸는 비효율적인 일이 많이 벌어집니다. 그래서 풀이 방법은 평가원 출제 문제와 동일하지만 다소 생소한 느낌을 주는 문제로 변형해서 스스로 문제를 탐구할 수 있도록 하는 점이 좋았습니다.
3. 문제가 대체적으로 깔끔했습니다. 봉투모의고사, 다른 선생님 모의고사를 보면 1. 내신형 문제가 섞여들어가거나 2. 계산 실수를 하느냐 안하느냐에 따라서 맞고 틀리고가 결정되는 문제가 간혹 있습니다. 이 모의고사에서는 계산보다는 수학적 실력에 따라서 판가름이 나도록 조정이 되어 있어서 질이 좋은 모의고사라는 생각이 듭니다.
4. 학생들이 주로 어려워하는 함수 부분을 문제화시켜서 취약한 문제 유형을 연습해볼 수 있습니다. 고난도 함수 문제는 다소 한정되어 있기 때문에 학생들에게도 좋은 자원이 될 것이라고 생각합니다.
4. 단점 및 개선 요구사항
1. 전반적인 난이도가 평이했습니다. 과연 킬러문항이라고 볼 수 있는 지가 의문인 문제들이 다소 많았습니다. 2번, 5번, 9번 같은 문제들은 4점 중에서 난이도가 낮은 편에 속합니다. 킬러문항들은 보통 1. 해석이 들어가야지만 문제가 쉽게 풀리는 문제, 2. 여러 개념, 유형이 혼재된 문제인 형태를 하고 있습니다. 2번, 5번 같은 경우는 한 유형으로 이루어져서 다소 난이도가 쉽다는 느낌을 받았습니다.2번 문제는 ‘점수의 경우의 수’가 아니라 ‘A가 8문제를 맞추고, D가 1문제를 맞췄을 때, 네 사람이 문제를 맞추는 경우의 수는?’과 같은 식으로 바꾸면 고려해야 할 점들이 늘어나기 때문에 체감 난이도가 상승한다고 생각합니다.5번 문제는 극점이 2개인 삼차함수와 같이, 일대일 대응이 아니면서 문제를 동시에 성립시키는 경우를 시도해보면 어떨까 생각해 봅니다. 기함수와 우함수의 성질만 알고 있으면 너무나도 쉽게 풀리는 문제여서 아쉬웠습니다. 예를 들어서, f(x)를 고차함수로 변경하고, f(x) <_(이상) t를 만족하는 x의 최댓값으로 바뀐다면, g(x)의 그래프를 일일이 그려서 풀어야 하기 때문에 난이도가 올라갈 것입니다. 실제 이런 식의 기출문제가 있는데, 많은 학생들이 어려워하는 부분입니다.
2. 기존의 기출문제를 단순 변형시킨 것에 그쳤다는 생각이 듭니다. 고난도 킬러문제들은 반복되지 않을 확률이 더 높습니다. 설령 반복된다고 하더라도 보통의 학생들은 ‘그게 그 문제였어?’하는 반응을 내비칩니다. 하지만 킬러 문항 10선을 보게 되면 어디서 변형시켰는지 단번에 알아차릴 수 있습니다. 원인은 소극적인 변형이라고 생각합니다. 로그를 무리함수로 변형한다던가, 상수를 변형한다던가와 같은 변형은 솔직히 말해서 학생들에게 큰 도움은 되지 않을 것이라고 생각합니다. 기존의 문제 원리만을 추출해서 파격적으로 변형시킨 문제가 학생들에게 도움이 될 것이라고 생각합니다.
3. 출제 유형이 편협합니다. 다소 함수 부분에만 치우쳐저 있고, 확률과 통계부분과 같은 부분은 제시되지 않고 있습니다. 집합, 명제, 확률부분과 같은 부분도 문제화했다면 더 좋을 것 같습니다. 실제로 2016학년도 교육청 30문제로 바둑돌 확률문제가 나온 적이 있습니다. 그 당시 모든 학생들이 확률이 30번으로 문제화될 것이라는 생각 없이 공부해왔기 때문에 대부분 패닉상태였습니다. 예상치 못한 부분의 문제화에도 대비할 수 있도록 ,다양한 단원의 문제화가 필요하다고 생각합니다. 덧붙여서, 미분불가능한 점의 개수로 문제화가 꾸준히 되고 있는데, 그것도 다루어주었으면 합니다.
5. 난이도
7번을 제외하고 다른 문제들은 과연 킬러문제라고 할 수 있을까 의문스럽습니다. 시중 문제들은 수험생에게도 이미 익숙하기 때문에 과연 이러한 변형 문제가 수학 21번, 29번, 30번 정답을 위한 훈련이 될 수 있을지 잘 모르겠습니다.
6. 총괄 평가
킬러문제(나 형) 10문항을 검토하면서, 전반적으로 10문제 다 기존의 수능 기조와 비슷하게 ‘어려움 없이 무난한 난이도’라고 느꼈습니다. 기존의 기출문제를 토대로 단순 변형한 문제들이 주를 이루고 있어서 그런 것이라고 생각합니다. 수능 교과과정이 수정되면서 누락되었던 기출문제들을 변형해서 해당 교육과정에 편입시키는 시도는 긍정적으로 평가받을만 합니다. 그 외에도 17학년도 평가원 문제의 변형, 이전의 기출문제의 변형을 통해서 평가원의 출제방식을 한 번 더 익히기에 적합한 문제들이었다고 생각합니다. 특히, 고난도 함수 유형의 문제들이 많아서 이 부분을 어려워하는 학생들이 연습하기 좋다고 생각합니다.
하지만 문제들이 단순변형에 그치는 경우가 많아서 최상위급학생과 상위급 학생을 가르는 문제를 연습하기에는 무리가 있었다고 생각합니다. 소극적인 변형보다는 적극적인 변형이 필요해 보입니다. 그리고 출제 유형이 다소 편협합니다. 미적분1 파트에 문제가 포진되어있습니다. 평가원의 기조 상 미적분1 부분에서 고난도가 출제될 것으로 예상되지만, 작년(16년도) 교육청에서 30번에서 중복조합이 문제화되었다는 점을 고려할 때 확률과 통계부분, 수2에서도 고난도 문제 대비가 필요하다고 생각합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
과외 힘들다 0
스스로 불러온 재앙..
-
미성년자한테 ㅋㅋ
-
지금 378페이지 푸는데 6평 전까지 끝 낼 수 있나 개학날부터 풀었는데 돌아버리겠네
-
릴러말즈 3
조음
-
백만덕 가쥬아
-
부분집합의 성질이 전체집합으로 상속되지 아니한다.
-
왜 아무도 안 들어주는 지 알 것 같으면 개추
-
사랑한다연세
-
앞으로 평생 봐도 괜찮겠다 싶을 정도로... 그냥 반수를 접을까...
-
뭔글 말하늨거야 2
알려주ㅏ
-
차단했었네
-
24,25수능 두개 합쳐서 난이도 몇등정도 됨요
-
. . .
-
잘 모르겠음..
-
컨텐츠관리자
-
간 이유는 뭔지 물어봐도될까요??
-
시대인재 김현우 선생님 수업 관심있어서 들어보려고 합니다. 시대인재 강사분들 수업이...
-
왕자님 4
화이팅
-
작년 메디컬 입결 이정도고 (중복, N수 포함)나머지 입결이 이정돈데 (얘도 중복,...
-
강남 산게 자부심인가 10
부모덕 아님?
-
스카 4주권 샀다가 10일동안 10시간도 안써서 환불할라캤는데 환불금 0원이네 화가난다화가난다
-
님들은 ㅈㄴ 님 이상형인 여자가 작정하고 성적인 유혹이나 노골적으로 플러팅하면서...
-
뭐야무슨메타야 8
어디야어디
-
3모 5모 다 높4로 마무리를 했지만 이투스 정도는 3입니다..ㅠㅠ 겨울방학때는...
-
빨리 듣고싶은데 답답하네요
-
엥? 2
그게 결론이 왜 그렇게나지
-
상습범이네
-
서울사는 게 저 사람의 유일한 업적인데 어떡함. . . 8
이해해드려야지 . . .
-
국어과외경력 없음 (수학만 한번..) 24 6 9 수능 백분위 99 100 100...
-
내가 디시충이었을땐 이해 못했는데 디시 접고 나서 디시충들 망언 남기거나...
-
오르비에 11
무슨 빌런 보존의 법칙이 있는거도 아니고 한명사라지면 한명나오네
-
AB=√3 BC=2이고 각 CBA=π/2인 직각삼각형 ABC와 선분 BC를 이름으로...
-
아닙니다..
-
선이 어딘지를 모름
-
경한 가고싶다… 수학 12 15 29틀렸네요 10번에서 쓸데없이 너무 시간씀 힘들다 ㅅㅂ
-
선민의식이 아니고 26
그저 정상적인 교육환경에서 자란것에 대한 자부심임 ㅇㅇ
-
5모 빈칸풀때 intimidate 뜻도 몰라서 원래 답 고르고 intimidate 이걸로 바꿨었는데
-
오늘부터 생긴 소망이다…
-
로 시작하고 00년생부터는 뒷자리가 3, 4로 시작한대서..... 이거 저만 신기한거예요?
-
ㅈㄴ맞아야댐?
-
수2 일주일 뒤에 끝낼거같아서요 참고로 5모 등급컷기준 미적중간2 엔티켓 빅포텐...
-
시발 다행이다
-
흠 5모 국어 3
풀어볼까요 풀지말까요 어차피 담주부터 앱스키마 시작이라 당장 내일은 할거없긴한디
-
안 불편함??
-
지금까지 학평 등의 시험 전날에는 항상 총정리하는 식의 공부를 해왔는데 아무래도...
첫번째 댓글의 주인공이 되어보세요.