(안녕맨)<화요 수학칼럼 - 적분이란? >
게시글 주소: https://orbi.kr/0008782522













1. 등차수열의 일반항 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8607869&showAll=true
2. 이과전용 칼럼- 역함수 적분법 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8613037&showAll=true
3. 등차등비수열의 합의 또다른 고찰 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8643346&showAll=true
4. 주기와 대칭을 나타내는 함수식 총이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8647859&showAll=true
5. 3가지 표준편차 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8669293&showAll=true
6. 점의 이동과 그래프의 이동의 차이 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8685920&showAll=true
7. 경우의수 접근방법에 대해서 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8691610&showAll=true
8. 무한급수의 정적분 표시 총 이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8717582&showAll=true
9. 정적분의 동치 변형 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8742407&showAll=true
10. 외워두면 좋은 면적 공식 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8759526&showAll=true
11. 2차 곡선에서 접선의 방정식 공식화 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8766382&showAll=true
12. 미분이란? : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8776957&showAll=true
cf) <8월 1일 대치동 오르비 학원 개강 안내>
8월 1일 (다다음주 월요일)부터 월수금 8주 커리로 안녕맨의 끝장인강 총정리 & 안녕맨의 손으로 만든 2017 기출시험지 10회 자기시험지 만들기 현강이 시작합니다
관리자님 말씀으로는 오르비 역대 최고의 시설이라고 하네요 (완전 모던하게 꾸몄대요 ㅎ)
학원 위치는 대치동 은마아파트 입구 사거리 교차로 근교 메인대로변에 있습니다
(교차로에서 대치사거리 쪽으로 걸어서 3분거리 ) 주소는 대치동 931-22
시간은 문과 6시~8시 // 이과 8시~10시 구요 한시간은 끝장인강 잠시 휴식후 나머지 한시간은
기출시험지 풀이 하는 수업을 하게 됩니다
8월 1일 첫수업은 무료 강의 인데 그날 오시는분들은 반드시 안녕맨의 손으로 만든 2017 대 수능대비 기출시험지 1회를 풀고 오셔야 합니다 (이과는 http://class.orbi.kr/class/776/ ,
문과는 http://class.orbi.kr/class/777/ 여기서 자료 다운 받으시고 진행하시면 됩니다)
당일 수업 교재는 임시로 대여 해 드립니다(물론 수강 등록을 하시면 무료로 드립니다)
참고로 무료 개강 수업 후 조 추첨해서(네이버 사다리를 돌릴거에요) 문이과 각각 한분씩
컬쳐랜드 문화상품권 1만원권 1매를 선물로 드릴거에요 ㅎ
자세한 정보는 http://class.orbi.kr/group/85/ 여기서 확인하시면 됩니다
아무쪼록 많이 참석해 주셨으면 하는 바램입니다 감사합니다 꾸벅~
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
진짜 연예인인줄요 팔로우했습니다 앞으로도 좋은 게시물 부탁드립니다 아니 얼굴빼고님...
-
50% 살아있거나,죽었거나 확통러라 계산이 되네 이게
-
가기로 한 팟에 납치됨 그때도 내가 살아있을까
-
미안하다 내 옷들아... 나처럼 어깨쳐지고 머리 큰 주인 만나서 너네가 못나보이는구나
-
으흐흐 일루와잇
-
형 자러간다 4
-
귀여워 2
-
나 오또케….
-
ㅈ반고 학생에게 꿈과 희망을 주세요..
-
일루와요
-
인증하기조은시간
-
좋은꿈꾸세요 오르비 14
-
저 특정해보셈 2
-
그때는 다니기가 그렇게 싫었는데 지금은 의지도 부족하고 돈도 없고 걍 자살마렵다...
-
?
-
아 ㅈ됐네 6
새터에서 귀엽다는 말 많이 들었는데 존못한남이어서 비꼼당한거냐? 시발
-
새벽기념 2
아무것도 안하기
-
매일못생긴도태남이라서
-
헤어지기로 했는데 이유 중 하나가 최근에 여행 갔을 때 내가 공황발작 크게 한 적...
-
합동 ㅇㅈ 0
재밌다
-
추가모집 외대글 1명 뽑는 과인데 5번까지는 빠질까요ㅠㅠㅠ 너무 절실해요ㅠㅠ 제발
-
와.. 젠지 클래식이던 시절이 있었는데.. 브리온 젠지전 복기라길래 멤버를 봤는데 미드가 비디디 ㄷ
-
성별 바뀌어도 똑같을듯 얼굴이 짱이다
-
현재 김승리쌤 커리를 타고 있는데 유독 문학부분에서 많이 틀려서 문학 유명한...
-
이시기에 개정 시발점으로 다시 시작해도 괜찮을까요? 작수 수학등급은 처참합니다 어3겨우 푸는정도에요
-
서울대 영어 12
거의 안 보나요? 3만 넘으면 된다는 말이 있던데
-
안녕하세요 이번에 무휴학 반수를 할 예정인 학생입니다 문과라서 1학기는 국어 수학...
-
내가 현역시절에는 여긴 뭐지... 왜 공부열심히 하는 뉴비 배척하냐 이런 생각이...
-
국어는 실력 오르는게 눈에 안보이니깐.. 초조해져....ㅜㅜㅠ
-
저격메타->페북시절느낌메타->사랑메타 매일매일 분위기가 바뀜뇨
-
이 향은 여자친구랑 같이 쓰시면 좋아요~아 네^^
-
김현우 라이브 0
지금 대기 있나요?
-
대학도 붙었고 이제 떠나갈 때가 온듯
-
나 사랑해주면 12
저도 님들 사랑해드릴게여
-
보기좋네요
-
나만 이거 볼때마다 개웃김? 난 둘 다 안 좋아하는데 이 사진 어디 올라오면 양쪽...
-
위협적인물도 2
아 내가봐도 사랑하기 존나빡세노 가던길가십쇼
-
ㅇ
-
법선벡터 외적안하고 찾기 and 평면 연장하기 +OA에 수직인 평면이 평면...
-
내가 해주는거 말고 받고 싶어
-
그 카리나 말고 나 나 나라고
-
수보구도 사랑해줘 12
이건 의무야
-
이건 28렙이 맞음
-
welcome 을종배당이자소득세 영혼의 동료 항상 감사합니다 Goat
-
하연도 사랑해주자 12
-
인스타에서 아무사진 긁어오면 절대모를듯
안녕맨님 궁금한게있는데
함수 f a부터 b까지 의넓이가 왜 f를적분한 함수의
함숫값의 차로 구할수있나요?
예를들면 일차함수의 면적을구하는데 이차함수의
함숫값의 차가 일차한수의 면적이되는게 신기해요
일차함수의 함수값은 길이구요 면적은 길이를 두번곱해서 구해요 길이가 1차면 면적은 길이의 제곱이니깐 2차가 되요
이해가 잘않되요
자세히 설명 드릴게요
인테그랄은 원래 무한급수죠 연속된 무한개의 값을 더할때 쓰는거구요
우선 구분구적을 이해할때 길이가 합해서 면적이 되는게 절대 아닙니다
즉 f(x)를 더해서 면적을 만드는게 아니라 아주 얇은 직사각형을 무한개 더해
서 면적을 구한다고 생각하시면 되요
이때 세로에 해당되는게 f(x)구요 아주 작은 가로에 해당되는게 dx 입니
다 직사각형은 가로와 세로를 곱하는데
여기서 가로에 해당되는 dx가 x에 관한 1차식이라고 생각하시면
실제 면적을 구할때는 f(x)보다 한차수가 높아지죠 (적분하게 되면 차수
가 한차수 높아집니다) 그래서 면적이 그렇게 되요
그니깐 함수값이 1차이면 면적은 2차식이 되고
함수값이 2차이면 면적은 3차
즉, 함수값보다 차수가 한차수 높은 면적으로 나옵니다
서로 빼는거는 구분구적의 계산이 위의 칼럼대로 부정적분해서 양끝값더
한것의 차이라는게 증명됬기 때문에 그렇게 쓰는거구요
그거 교과서에 있어요
쉽게 생각하면 되요
F(x)라는것은 0부터 x 까지 f(x) 그래프 아래의 면적을 의미해요
그러니 a부터 b까지의 면적은 0부터 b까지의 면적에서 0부터 a까지의 면적을 빼면 되므로 F(b)-F(a) 가 되는거죠
대학 미적분학1에서 다루는 내용이군요
hello man(bjh)쌤 홧팅!!!! ^^
감쌈다 정답이오쌤님ㅎ
글씨옆에 잇던게 눈에익어서 봣더니 벤젠(C6H6)였어....
와..
미분은 그냥 괜찮네이랬는데
적분은 내가 강의할때 하는말 다담겨있네ㄷㄷ추천합니다 글 정말 잘읽었어요
감사합니다 ㅎ
공감 ㅋㅋㅋㅋ 과외준비할때 다른것도 읽어보구 참고해야겠어요 안녕맨쌤파이팅하세요!
네 약간이라도 도움이 됬으면 좋겠습니다ㅎ 감사합니다
인티그럴?
쌤 궁금한게 책에 나오지도 않았는데
어떻게 깊이있는 개념을 터득하신겁니까?ㅠ
완죤 부럽습니다.. 책에나온개념도
완전히 이해못하는디ㅠ
구지 말하자면 연륜이죠 ㅎ
제가 처음 과외했던 친구가 78년생 고3 3명이었어요 ㅎ
그 이후 5년정도 휘트니스센터할때 빼고는 수학을 놓은적이 없네요 ㅎ
구지--->굳이..ㅜㅜ
아 넵 ㅠㅠ
좋은 글 감사합니다 ㅎㅎ
.도움이 됬다니 다행이네요 ㅎ