풀만한 수열의 극한 문제 하나 드립니다~
게시글 주소: https://orbi.kr/0008629473
답.txt
제가 만든거 아닙니다..그래서 퀄리티도 그렇게 나쁘지 않을겁니다..
원문링크는 아래와 같습니다.
https://www.artofproblemsolving.com/community/u296133h1220663p6119372
링크 댓글에 제가 허접한 영어실력으로 풀이를 달긴 했는데 저의 작문 실력을 보이고 싶지 않으니 그냥 무시하시면 됩니다..답은 첨부파일에!
(링크가 뭐 엄청 대단한 문제처럼 돼있는데 실상은 그렇진 않은 것 같습니다..)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
소오름
-
https://orbi.kr/00072835207 이 글 고3 몇 등급 정도가...
-
생각보다 애들 줄 잘세울수 있을듯? 근데 정시100%가 남아있어야 해당되는 말이지
-
기상 1
-
저는 문학 빡세지고 나서부터는 비문학 문학 언매 순서대로 33 30 15 쓰는듯요...
-
카르보나라 먹고 싶다
-
나이키 0
슈즈 걸~ 니가 느끼는 치명적인 매력을 줏어 (치명적인 심멘)
-
안녕하세요. 경북대학교 의예과 23학번 지니입니다. 생명과학 1을 어려워하는...
-
장염 2일차 0
24시간째 포카리 빼고 안먹음 어제는 19시까지밖에 공부 못함 오줌 색이 확연히...
-
(수능 기준) 정시 내신반영 심화로 인한 N수생 감소 케이스까지 적어보겠음 국어...
-
나경원 “서울대에 역대 대통령 자료실도 없는데...시진핑 자료실 폐쇄해야” 0
대선 출마를 선언한 나경원 국민의힘 의원이 15일 서울대 시진핑 중국 국가주석...
-
나도 좀 행복해지고싶다 ㅅㅂ 노력 더 많이해야지
-
글씨 개선함!
-
궁금 전체적인 외적인 이미지나 이런게 어때보임?
-
컴파일러 본교재 컴파일러 데이터베이스 컴파일러 아카이브 이거 3개 어떤...
-
원순열 제대로 배우면 국밥 문제인데
-
왜 숙취 비스무리한 기분이 들지 모래주머니 훈련데이다 ㅅㅂ
-
기출코드 후에 0
바로 n제로 들어가도 되나여?? 실전개념없이
-
쉬는시간에 푸쉬업 가능
-
따리라리라랏 뚜~
-
주인공 부모 세대는 20대부터 중년 배우를 쓰고 주인공 세대는 청/장년->중년으로...
-
영어, 수학, 지구과학만 챙겨야지 화학 생명 문학은 하루전에 벼락치기
-
님들?
-
ㅋ ㅋㅋㅋㅋ ㅋㅋ ㅋㅋ 가령말이지 1970년대 라는 말을 하면 년대?...
-
약한영웅보는데 0
이사람 ㅈㄴ잘생겼어
-
왜냐면 집에서 나온순간부터 뛰었음
-
공부를 열심히하면 정치에 관심이 없어지는 이유를 암? 5
왜냐면 ㅋㅋ ㅋㅋ ㅋ 중도 를 좋아하니깐 ㅋ크하하하하하하하하하하하
-
졸려.. 0
더 자고싶다..
-
메이드 대학보내고 난 집에 잇는거임
-
비추인가요? srt 타면 1시간 조금 넘게 걸리긴하는데 .. 지방러라서 ㅜ...
-
결국잠못잠 2
-
옯쟝 하잇 4
나니가스키
-
아니지 노천극장 똥군기짤 등등 박제될만한 건 다 돌아다녔는데도 연고대 입학과는 일절...
-
[스포] 28 수능(예시) 국어 독서 사회·문화 지문 복습시 참조 1
안녕하세요, 디시 수갤·빡갤 등지에서 활동하는 무명의 국어 강사입니다. 어제 발표된...
-
나스닥 파멸적 숏
-
어젠 인증 떡밥도 안돌았는데 ㅅㅂ
-
이번 3모에서 수학 미적 백분위 95정도 나왔는데요, 현장에서 12번 계산실수,...
-
제발 들어봐요 안죽어요
-
교사경 모음인 거 같은데 어떰? 평가원은 카나토미랑 수분감 풀어서 충분한디
-
이 사람 강의력이랑 단권화 전략 예사롭지 않음 이미 윤리 1타지만
-
혼자 공부한다고 하는데 시간만 오래 걸리고 선지 판단과 지문 분석이 너무...
-
얼버기 혈서 0
-
더 자고싶다 0
-
먹어도 괜찮...겠죠..?
-
물리 시험 두번을 치기 위해서 계산기에 돈을 태운다..??? 싼 거라도 사야하나 그냥
-
얼버기 0
부지런행
-
물리화학이 어렵게나올텐데 배기범이나 화학1타가 통과1타하려나
-
실검 2위 뭐임 8
-
확통말고 기하나 삼각함수 미분은 배울수없는거임? 인강도 없고 대학가서만 배울수있나 좀 아쉽군
코시수열은 교육과정 아득히 바깥..ㅠ
이 수열은 굳이 따지자면 코시수열이긴 하지만, 왜 그 말씀을 하시는건지요?..
엡델 안쓰고 교과과정 내에서 어떻게 답을 구할 수 있을지 잘 모르겠네요. 풀이 보여주실 수 있으신가요?.?
그냥 대입해서 계산하다보면 x4, x5의 절대값이 1/4보다 작습니다. f(x)=x^2+x/2라고 할 때, x2n, x(2n+1)의 절대값이 a보다 작고 a가 1/2보다 작으면 x(2n+2), x(2n+3)의 절대값이 f(a)보다 작음을 절대부등식을 통해 할 수 있습니다. n이 1씩 커질수록 절대값 제한에 f가 덧붙여지고, 이때 링크의 제 풀이에서는 f가 덧붙여지는것을수열로 표현했는데, 여기에 f가 붙을수록 0에 수렴함을(말로 표현하려니 이렇게 밖에 안되네요..) 증명할 수 있습니다.(이는 등비수열에서 공비가 1보다 작으면 0으로 수렴함, 샌드위치 정리에 의해 증명되지요.) 절대값 제한이 0에 수렴하니까 결국 샌드위치 정리에 의해 xn자체도 0에 수렴하게 되지요. 링크의 풀이에는 제가 엡델을 썻는데 그냥 제가 입델을 좋아해서 쓴 것이고, 굳이 쓸 필요는 없다고 생각합니다만...
샌드위치가 먹힐 줄 몰랐네요. 감사합니다