20. 통계 문제 하나 풀고 가세요
게시글 주소: https://orbi.kr/0008548360
ans.pdf

답은 첨부파일로 확인해주세요.
오르비 검색창 #제헌 으로 검색하시면
또다른 문제도 풀어 보실 수 있습니다. (현재 일부 문제는 복구중입니다.)
http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8521290&showAll=true
-교재를 무료로 지원합니다. 위 링크의 내용을 확인해주세요.
-제헌이 모의고사 판매 링크
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
정치인 하고싶다 0
원래부터 하고 싶었는데 이 혼란스러운 시대에 딱 맞기도 함 근데 일단 대학을 가서 돈을 벌어야지!
-
기강 안잡냐?
-
집에 양배추랑 쌈채소 쌈장은 있었음 하지만 삼겹살 살 돈이 없었음 4처넌 있었나...
-
4월더프 수학 0
76점이면 어느정도일까요?? 통통이에여
-
바나나 0
킥킥..
-
선택 언매/화작: not fire, 선택+독서론이 15분 컷 나는 것이 이상적 공통...
-
'놀고먹기학과'의 시대가 와야함 대학은 간판의 역할만을 할 뿐 자유롭게 풀어주고...
-
지피티가 추천해줌
-
더프 처음 샀는데 더프 패키지에 빠른정답도 없고 답지는 되게 불편하게 되어있네 원래 이런가요
-
ebs 독서만큼 쓸모 없는 게 없는 느낌... 교과서에 호랑이 넣어놓고는 현무 들고...
-
술자리에서 여자랑 자꾸 팔 부딪히거든 ㅋㅋㅋ 미안하다는 핑계로 말 걸 수 있음
-
왤케 좋지 ㅅㅂ 개힘들긴한데 혼자가 편하긴함
-
식민지 마렵다 1
오래된생각이다
-
ㄴㅔ 오랜만에 왔어요
-
반수러들중에 공대생출신 대충 비율이 어케될까요 일단 교대 사대가 압도적인건 아는데
-
의사에 뭐 있나 ㅋㅋㅋ
-
ㅈㄴ 떠거버지네 이거 하는 애들 대부분 잼민이라 말을 존나 안들음 컴롤 랭크는 하기...
-
지네가 있어.. 갑자기 아파트 그리워지네
-
안녕하세요 1
잘 지내세요?
-
국어호ㅓㅇ들 들어와서 풀어주세요/.. 이거 레전드임 0
마르틴 하이데거는 20세기 존재론의 흐름 속에서 독보적인 위치를 차지하는...
-
아으아 5
-
이제 집가야겠다 2
-
의전원도 이공계 인재 쓸어간 것으로 아는데 로스쿨로 인한 학점 폐혜가 좀 많음...
-
매일 아침마다 수특 분석한거 읽으려고 하는데 어떤 선생님의 분석서가 가장...
-
여기까지만 0
포기퍼기
-
4덮 생윤 0
무보 44면 2뜰까요..?
-
국어 강사 추천좀요..
-
bxtre.kr/
-
수능특강 수학은 진짜 16
어째 매년 날이갈수록 구려지는거같지
-
화학 수행 질문 18
내신 수행 문제인데 분수로 저렇게 썼는데 답이 맞을까요? 22.4는 3으로...
-
위로 한 마디만 남기고 가주십쇼,,
-
4덮 생윤 0
42면 무보로 몇 뜰까요?
-
4덮 국어 0
화작 68 정도면 무보로 몇 뜰까요?
-
물리력 높여야 됨
-
재미가없어
-
bxtre.kr/
-
지피티유료결제는신의한수
-
수학 n제 3
작년에 거의 기출만 해서.. 샤인미? 교재가 좋다고들 하셔서 풀어보고 싶은데...
-
사문 vs 정법 4
사문 : 분명 수능 전날까지 잘했었음 근데 작수 당일 4등급 쳐맞았고 이유조차 모름...
-
1. 실력측정용이니 모르는 문제는 안 찍고 점수 받는다 2. 그냥 찍는다. 궁금해서...
-
재수생입니다. 1/15부터 이투스247에서 독재중입니다. 제가 수학이 약해서 기출을...
-
직탐이랑 제2외국어는 왜 안 올려줌? 여기도 시간이랑 문항수 출제과목 바뀌잖아 ㅡㅡ
-
숭실 경영 입결 0
백분위 어느정도면 안정으로 갈 수 있나여??
-
레넥톤이 떡상하네 ㅋㅋ
-
범준이형!!
-
분명 킬러급은 없는데 2페부터 계산압박이 말이안됨 결국 4페 도달도 쉽지가 않음
-
나니가스키 3
초코민또 요리모 아나타
하아하아.. 1빠..ㅎㅎ
좋은문제 풀어볼게요!!
ㅎㅎ
좋어용 헝헝
감사용
감사요... 깔끔합니다
앞으론 더러운 문제좀 내야겠네요 ㅎㅎ
예?? ㅋㅋㅋ 아닙니다
*@}>->----
크..좋다
^^
항상 감사합니다ㅎ
우!
진!
충!
깜사합니다
*^^* ^_^&
문제 좋네요 ㅎ
감사하 합니다
감사합니당~~ 님모의고사오늘삿아요ㅎㅎ
^^
문제를 눈으로 풀어보는 것도 좋은 습관인가요? 항상 올려주시는 문제를 버스 안이나 자기전에 눈으로 풀어보고있어요 감사해요ㅎㅎ
시험장에선 그럼 안되겠지만... 평소에 그렇게 하면 시험장에서 도움 많이 될거같네요
걍 n1부터 다 넣어보면 되는건가요?
아니면 다른풀이가 있는건지..요?
몇개가 답이 될 지, 모르는 상황에서 그렇게 푸시면 안돼요.
위 문제는 n=2, 3, 4 였기 때문에 운이 좋았겠지만, 의도는
표준화+ 확률밀도함수의 대칭성을 이용하는 문제입니다.
표준화와 대칭성을 이용하면 어떻게 풀수있는건가요?
f(8)=0.24 이므로 g(n) ≥ 0.47인 n의 값을 찾으면 돼요.
g(n)=P(n-4 ≤ Z ≤ n-2)
이므로 n=2, 3, 4 입니다. 대칭성을 이용한다는 것은
n=2일 때, g(2)=P(-2 ≤ Z ≤ 0)
n=4일 때, g(4)=P(0 ≤ Z ≤ 2)
여기서 이용된 거구요
n을 하나하나 넣어서 풀었는데 맞는 건가얀?
몇개가 답이 될 지, 모르는 상황에서 그렇게 푸시면 안돼요.
위 문제는 n=2, 3, 4 였기 때문에 운이 좋았겠지만, 의도는
표준화+ 확률밀도함수의 대칭성을 이용하는 문제입니다.
예를들어, 답이 n=10, 11, 12였다면 푸는데 오래걸리셨을거에요 ㅎㅎ
문제 고퀄이네요ㅎㅎ
잘풀고갑니다.
^^&
이런형태 문제는 또 처음보는듯 ㅇㅅㅇ...
암튼 잘 풀고 갑니다 ㅎㅎ
^^& 2012 9평 형태 조금 바꿔본거에요
엌 기출공부 안한거 티냈네 ㅋㅋㅋ
죄송한데 ...
n이 2하고 4일때는 알겠는데 n이 3일때는 어떻게 되는건가요??
종모양의 대칭형태니까 확률이 0.47보다는 클거기 때문에 n=3도 답으로 골라줘야합니다.
확률 자체를 구하는 방법도 있긴 하죠 ㅎㅎ -1에서 1이니까 0.68 이겠네요.
위의 댓글에 g (n) 확인해보세용
크거나 같은건데 같다라고만 봣네요 감사합니다^^
g(n)≥0.47까지 구하고 표보고 바로 n=4 넣은다음 정규분포 그래프 그려서 대칭성 판별했는데 너무 직관적인가 ㅂㄷㅂㄷ
괜찮습니다.
스무스하네여
제헌님 n=1일 떄는 판별할 수 없지 않나요?
네??
g (n)>=0.47 에서요ㅎㅎn=1일때는 정확한값을 모르지않나요?
네 n=2 3 4 가 답이에요