[JYJ칼럼] 6월테제③ : 미분법이 강화된다① 역함수
게시글 주소: https://orbi.kr/0008413601
벌써 세번째 칼럼입니다.
타이틀은 "미분법이 강화된다" 이고 그중 역함수의 미분법입니다.
제가 요즘 케치프레이즈처럼 외치고 다니는 말이 바로
"미분계수의 시대는 가고, 미분법의 시대가 왔다"
입니다. 출제범위의 성격에 따라 문제의 구성방식이 달라지리라는 예상입니다만
그렇다고 해도 미분의 정의에서부터 그래프의 활용에 이르기까지
미분이라는 전체 단윈에 대한 체계적 이해는 필수입니다.
다만, 무슨 일이든 디테일한 변화가 생각보다 우리에게 미치는 영향이
매우 클 때가 많으므로 함수나 관계를 유도하여 미분계수를 계산해내는
미분법 연습을 충실히 해 두는 계기가 되시면 좋겠습니다.
2016.05.13. 장영진 드림
*본 컬럼은 DESKTOP환경에 최적화 되었습니다.
http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8371471
①:1테제> http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8380565
②:2테제> http://orbi.kr/0008400498
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
엄청어렵다는디
-
ㄱㄱ
-
인터넷에 하도 장단점 뭐시기 저시기가 많이 돌아다녀서 정신이 진짜 하나도 읍따 ㅠㅠ...
-
바로 장학주는 학원 학원비 다 높반한테 장학주는 꼴임 비싸게 다니는 꼴
-
와 클났네ㅋㅋ
-
의 정체에 관해서 뭔가 반전이 있었던 거 같은데.. 아시는 분? 에렌 엄마 집어먹은...
-
뭐 고르실거임?
-
입학식. 2
근데 뭐 첨엔 별 생각 안들었는데 이제와서보니 뭐 막판에 칸수쳐박힌것부터...
-
사는데 아무 지장 없고 멀쩡하게 자라서 신검 1급 나옴
-
ㅋㅋㅋㅋㅋㅋㅋㅋ 예습의 보람이 있노 ~
-
얼버기 0
ㅇㅇ
-
맞나요??0
-
진짜 몰라서 묻는거임
-
[2026 수능 대비반 오픈] - 1기 선착순 100명 모집 (대전, 대구, 거제, 종로) 0
[2026 수능 대비반 오픈] 1기 선착순 100명 모집 (각 지역별 100명...
-
미분가능성 질문 4
f(x) = x/x (x=/=0) 1 (x=0) 이거 x=0에서 미분 가능함?
-
평생독신으로늙어죽어버려....
-
수강신청 멸망함 2
이게현실일리없어요
-
변표나오고 6칸 > 2칸돼서 포기했었는데... 묵묵히 5수.
-
엄마가 전에 그랬엇는데 ㄹㅇ인가 흠
-
[고2, 고3 내신 대비 자료 공유] 2026년 특강 국어 고3 화법과 작문 기출 문제, 고2 문학 분석 기출 문제 자료 배포 0
안녕하세요 나무아카데미입니다. 2026년 특강 국어 고3 화법과 작문 기출 문제와...
-
투사탐 사1과1 2
작수 지구 4페이지는 2개밖에 못풀고 맞추고 앞에 많아 틀려서 3떠서 일단 국수...
-
생윤사문vs쌍사 0
작수 생윤1 사문높3사문 등급이 잘 안오르고 성향도 잘 안맞는거같아서 쌍사로...
-
홈페이지로 재종반 지원하려는데 홈페이지는 닫혀있어서 전화로 여쭤보니 카톡으로...
-
좋아한다는 뜻인가요
-
수학 22번이 어려워지기 시작한 게 20수능부터인가요 4
예전에는 22번이 지금 같은 포지션이 아니었다고 들어서
-
변표때문에 수능한번 더볼뻔한사람의 컨설팅 후기(정시기다리는) 4
성대 합격했습니다. 이번입시에 놀랍게도 중대경영 7칸 서성한 문사철이 2~3칸...
-
유급 난이도 어떤지 아시는분 계실까요?
-
모닝여캐투척 8
음역시귀엽군
-
언매 벼락치기 0
언매 개념 일주일이면 됨??
-
생기부 미련 없는데 제가 못 본 단점이 있을까요? 7주 정도 꽉 쓸 예정
-
제발요..
-
920.374인데 솔직히말해서 경북대 다군에 있었으면 가군 서성한라인 하나쯤은...
-
에혀 애초에 연대 간다고 약속하고 학교도 자퇴한건데 엄마는 내가 학교 자퇴햇을때...
-
안녕하세요 뉴비 인사올립니다! 반갑습니다 :)
-
또선생 1
또선생도 많이 하던데 뭐가 더 나을지 모르겠네
-
공부하러가즈아
-
강민철 언매 0
문제편이랑 익힘책은 강의에 안 올라오고 따로 해야하나요?
-
건글 원래 돌아야했던 두명을 못돌림 말했듯이 건글은 대형과가 아니라 이런거에 컷이 영향을 크게받음
-
고심리 핵빵이라더니 결과는 서성한 최초합급이고 고경영 631점 합격이라는게 팩트야?...
-
어휴..
-
인스타에서 표점 같으신 분이 공동 수석이라고 암튼 goat
-
대부분 언매하시나요?
-
진학사 3칸도 많이 뚤렸네여 ㄷㄷ 대다수가 예상 컷을 499는 넘겨야 했는데 ㅋㅋㅋ...
-
김지영 V올인원 1
김지영 조정식 고민임
-
이제 다시 공부시작하려는데 기코 > 뉴런 > 드릴 및 양승진쌤 엔제, 시중의 엔제들...
-
4월부터 반포학원가에 '킥보드없는 거리'…"전국 최초" 4
(서울=연합뉴스) 정준영 기자 = 서울 서초구(구청장 전성수)는 오는 4월부터 반포...
-
필요한 학과 서울대 정외 지균 인문 지균 역사교육 아동가족 윤리교육 연세대 문헌정보...
-
사람들 인식이 궁금
작년 수능 21번은
역함수의 미분법이라기 보단
곱의 미분법이 어울릴듯
역함수라는 발상자체가 어려웠던 문제..
저도 현장에서 역함수라고 생각도 못하고 그냥 음함수미분으로 했는데
끝나고보니 많은사람이 역함수로 풀었더라구요..놀랐음
맞습니다. 풀이과정 자체는 음함수 미분법이 더 간결합니다.
수능 21번의 f(t), g(t)와 같이 정의되지만 음함수 미분법으로 가면
더 돌아가야 하는 경우도 있기 때문에 역함수 미분법으로도
꼭 이해두시길 권합니다.
탑재해드린 23번은 그런 의도의 변형문제입니다.
칼럼감사합니다~~ 문제들 다 좋은거같아요...나오면 좋겠습니다 ㅠㅠ ㅎㅎ
문제까지 꼼꼼히 보셨다니 기쁘네요. 눈에 보이고 할 수 있는 일부터 하다 보면 좋은 결과들이 나오겠지요. 건투를 빌어요.
선생님 오늘 메가스터디 들어갔다가 맛보기 강의에 지금 칼럼의 문제들 해설이 있네요!! 정말 감사합니다ㅠ ㅠ ㅠ 조금 고민이 있던 문제가 있었는데 바로 해결됬습니다
감사합니다!!
도움이되었다니 기뻐요^^
문제들 정말 멋집니다. 대칭이동 해서 다시 그리지않고 y->x방향으로 그래프 자체로 바로 볼수있게 훈련시키는 문항들과 , 특히 20번 문제는 g''을 찾을때 보통 g'은 f'의 역수라는 기하학적 의미까지만 알고넘어가는데 "항등식"을 통해서 풀줄도 알아야한다는 칼럼내용을 토대로 g(f(x))=x에서부터 g''을 찾아냈네요 23번도 tan 역함수 (lnt)로 표현하는게 관건인듯하고 특히나 20번 문제는 정말 신선하네요 이 문항을 풀고나니 매개변수로 표현된 함수의 이계도함수도 건드리면 변별력이 상당하지않을까 하는 생각이 듭니다. 보통 dx/dt /dy/dt 까지만 알고 넘어가니까요 앞으로의 칼럼내용들도 기대되고 강의들도 기대됩니다
문제들의 구성을 저보다 더 명쾌하게 꿰뚫으셨네요. 말씀하신 매개변수표현의 이계도함수도 학생들의 약점입니다만 이번 6월테제엔 싣지 못했네요. 관심있게 지켜봐주셔서 감사하구요. 올한해 입시 승리로 이끌어가길 기원하겠습니다. 화이팅.
좋은글 감사합니다 문제도 잘풀고갑니다
도움되셨으면 좋겠네요. 앞으로도 많은 관심 부탁드립니다.
정말 명쾌한 해설 감사드립니다!!
많이 배우고 갑니다. 고맙습니다
해설까지 보신거 같아 더 좋네요. 남은 칼럼도 열심히 봐주세요. 감사해요
선생님 인강 잘듯고 있습니다ㅠㅠ
감사해요^^