미적분1 자작문제
게시글 주소: https://orbi.kr/0008207957

0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
종강좀 0
아
-
김승리 커리 1
재수를 조금 늦게 시작해서 올오카 다 끝내고 4월 말쯤에 tim 들어갈 것 같은데...
-
안녕하세요 '지구과학 최단기간 고정 1등급만들기' 저자 발로탱이입니다. 지난 1년간...
-
아 진도좀 빼고 싶은데
-
소오름
-
https://orbi.kr/00072835207 이 글 고3 몇 등급 정도가...
-
생각보다 애들 줄 잘세울수 있을듯? 근데 정시100%가 남아있어야 해당되는 말이지
-
기상 1
-
저는 문학 빡세지고 나서부터는 비문학 문학 언매 순서대로 33 30 15 쓰는듯요...
-
카르보나라 먹고 싶다
-
나이키 0
슈즈 걸~ 니가 느끼는 치명적인 매력을 줏어 (치명적인 심멘)
-
안녕하세요. 경북대학교 의예과 23학번 지니입니다. 생명과학 1을 어려워하는...
-
장염 2일차 0
24시간째 포카리 빼고 안먹음 어제는 19시까지밖에 공부 못함 오줌 색이 확연히...
-
(수능 기준) 정시 내신반영 심화로 인한 N수생 감소 케이스까지 적어보겠음 국어...
-
나경원 “서울대에 역대 대통령 자료실도 없는데...시진핑 자료실 폐쇄해야” 1
대선 출마를 선언한 나경원 국민의힘 의원이 15일 서울대 시진핑 중국 국가주석...
-
나도 좀 행복해지고싶다 ㅅㅂ 노력 더 많이해야지
-
글씨 개선함!
-
궁금 전체적인 외적인 이미지나 이런게 어때보임?
-
컴파일러 본교재 컴파일러 데이터베이스 컴파일러 아카이브 이거 3개 어떤...
-
원순열 제대로 배우면 국밥 문제인데
-
왜 숙취 비스무리한 기분이 들지 모래주머니 훈련데이다 ㅅㅂ
-
기출코드 후에 0
바로 n제로 들어가도 되나여?? 실전개념없이
-
쉬는시간에 푸쉬업 가능
-
따리라리라랏 뚜~
-
주인공 부모 세대는 20대부터 중년 배우를 쓰고 주인공 세대는 청/장년->중년으로...
-
님들?
-
ㅋ ㅋㅋㅋㅋ ㅋㅋ ㅋㅋ 가령말이지 1970년대 라는 말을 하면 년대?...
-
약한영웅보는데 0
이사람 ㅈㄴ잘생겼어
-
왜냐면 집에서 나온순간부터 뛰었음
-
공부를 열심히하면 정치에 관심이 없어지는 이유를 암? 5
왜냐면 ㅋㅋ ㅋㅋ ㅋ 중도 를 좋아하니깐 ㅋ크하하하하하하하하하하하
-
졸려.. 0
더 자고싶다..
-
메이드 대학보내고 난 집에 잇는거임
-
비추인가요? srt 타면 1시간 조금 넘게 걸리긴하는데 .. 지방러라서 ㅜ...
-
결국잠못잠 2
-
옯쟝 하잇 4
나니가스키
-
아니지 노천극장 똥군기짤 등등 박제될만한 건 다 돌아다녔는데도 연고대 입학과는 일절...
-
[스포] 28 수능(예시) 국어 독서 사회·문화 지문 복습시 참조 1
안녕하세요, 디시 수갤·빡갤 등지에서 활동하는 무명의 국어 강사입니다. 어제 발표된...
-
나스닥 파멸적 숏
-
어젠 인증 떡밥도 안돌았는데 ㅅㅂ
-
이번 3모에서 수학 미적 백분위 95정도 나왔는데요, 현장에서 12번 계산실수,...
-
제발 들어봐요 안죽어요
-
교사경 모음인 거 같은데 어떰? 평가원은 카나토미랑 수분감 풀어서 충분한디
-
이 사람 강의력이랑 단권화 전략 예사롭지 않음 이미 윤리 1타지만
-
혼자 공부한다고 하는데 시간만 오래 걸리고 선지 판단과 지문 분석이 너무...
-
얼버기 혈서 0
-
더 자고싶다 0
-
먹어도 괜찮...겠죠..?
-
물리 시험 두번을 치기 위해서 계산기에 돈을 태운다..??? 싼 거라도 사야하나 그냥
-
얼버기 0
부지런행
21?
15?
둘다 아녜요..
ㅠㅠ
히익? 3차함수 아녜여?
맞아용
(0,0)에서 만나면서 y= -x랑 접하는거 아니에요?
(라) 조건을 보시면 (0, 0)을 지날 수 없어요..
라 조건이 x가 0보다 같거나 작을때 x값이 커질수록 (0,0)과 이은 기울기가 커진다 아니에요?
제가 알기론 이게 아마 기출에 있었던 것으로 기억을 하는데 (라) 조건은 조금 조작이 필요해요.. 그리고 (0, 0)을 지날 수가 없어용 x2=0 x1=-2 이런것만 대입해봐두요
라 조건에서 x2랑 x1으로 나누면 g(x2)/x2 > g(x1)/x1 아니에요?
네 맞아요 전 그걸 증가함수로 해석하길 바랬던건뎅.. 기울기로 봐도 무방하긴 하겠군요 지금 보니.. 그렇다고 (0, 0)을 지날거란 보장은 없지만용
증가 함수라구여? 감소함수도 되는데요? 오히려 증가함수가 안되는거같은데
g(x)/x가 (x<0)에서 증가함수인걸용..
아 통채로 말씀하신거구나 전 당연히 g(x)만 이야기하시는줄 알았죠
죄송합니다 제가 설명이 모잘랐네요 ㅠㅠ
제가 수학을 못해서 자세힌 모르지만 x2=0 일때랑 x2=/=0 일때랑 자료해석을 다르게 해야하는거같은데 맞아요?
그래야 0,0 못지나가는거랑 감소함수인게 같이 나오는거같은데
x2=/=0이 무슨 의미인질 모르겠네요 ㅠㅠ..
그럼 답 75에요?
X2가 0이 아닐때랑 0일때랑 (라) 조건해석을 다르게 해야하지않나요? 라는 말이에요
그렇게 하고난다음에 마지막에 g(-1)=0 조건이랑 계수 음의 정수 조건으로 부정방정식 비슷하게 풀었는데 맞아요? (0,양수)지나면 (라)조건 위배되서 (0,음수)해서 풀었늗네
네 75 맞아용 x2가 0일때는 x1*x2로 못 나눠주니 대입해서 g(0)<0이라는 것만 밝혀주고 x2가 0이 아닐때는 x1*x2로 나눠서 생각해주는거에요 ㅎ
ㅇㅎ,, 제가 첨에 나눌때 조건파악을 좀잘못했네요 수알못 울고갑니다 광광,,
아니에요 잘하시는데요 ㅎㅎㅎ GOAT..
아녜요 진성 수알못입니다
ㅎㄷㄷ 그럴리가용
이과황님 이런식의 역기만은 옳지 않습니다
역기만이라뇨 ㅠ 전 그럴 능력이 없어용
거의 직감으로 g(x) 삼차함수로 놓고 푸니깐 쉽게 풀리긴 하는데
정석으로 풀려면 어떻게 도출해야 하나요?
g(x)가 4차함수인경우 2차함수인경우 3차함수인경우의 그래프 개형을 생각해서 풀도록 했어요 최고차항 계수도 그래서 줬구요
hx가 역함수 있다는 조건으로 개형추론 정도
f(x) = cx + b라 하자
f(x)의 역함수를 I(x)라 하자
I(x) = (1/c)x - (b/c) 이고
(가) 조건에 의하여
f(x) = cx + b = I(x) = (1/c)x - (b/c) 이므로
(1/c)x - (b/c) = cx + b 이고
c^2 = 1 이고 (b/c) = -b 이다
또한
(나) 와 (다) 조건에 의하여 g(x)는 이차 이상 사차 이하의 다항함수이다
또한
(라) 조건에 의하여 x2=0이라고 할때 g(x2) = g(0) < 0 이다
또한
함수 h(x)가 x=0에서 미분가능하므로
함수 h(x)는 x=0에서 연속이다
따라서
f(0) < 0이고
c=1일때 b=0이므로 f(0) < 0 이라는 조건이 성립할 수 없다
따라서 c= -1이고 b<0이다
따라서 h(x)가 실수 전체의 집합에서 미분가능하고 역함수가 존재하므로
h(x)는 실수 전체의 집합에서 감소해야 한다
따라서 g(x)가 최고차항이 음수인 이차 또는 사차 다항함수일 경우
x<0 인 어떤 실수 x에 대하여 g'(x)>0인 구간이 존재하므로
h(x)가 실수 전체의 집합에서 역함수를 가질 수 없다
따라서 g(x)는 삼차함수이고
g(x)= -x^3 + px^2 + qx + r이다
h(x)가 x=0에서 미분가능하므로
f'(0) = b = g'(0)이고
r=b이므로
g(x)= -x^3 + px^2 + qx + b이다
또한 g(-1) = 1+p-q+b=0이므로
g(x)= -x^3 + px^2 + qx + q - p - 1이고
g'(x) = -3x^2 + 2px + q이다
또한 g'(0) = f'(0) = -1이므로
g'(0)=q=-1이고
g(x)= -x^3 + px^2 - x - p - 2이다
또한
g(0)=-p-2<0이므로
p>-2이고 p는 음의 정수이므로 p=-1이다.
따라서 g(x) = -x^3 - x^2 - x - 1이고 f(x) = -x-1이다.
따라서
h(x)를 -1부터 1까지 적분한 값의 절댓값 = {(g(x)를 -1부터 0까지 적분한 값) + (f(x)를 0부터 1까지 적분한 값)}의 절댓값 = 25/12 = a
이므로
36a = 75
멋진 해설입니다!
자작문제 검색하다가 들어왔어요~
문제는 풀었는데 궁금한게 있어서요 (라) 조건은 g(0)의 부호를 알 수 있는것말고 다른 정보는 도출해낼 수 없나요? 예를들어 평균변화를 대소비교를통해 이계도함수의 부호를 알 수 있는것처럼요~혹시 문제 만드실때 (라)조건에서 다른 의도가 있나 해서 여쭤보아요!
(라)는 g(x)/x가 증가함수인걸 의도했습니다 ㅎ
그렇네요ㅎㅎ문제 너무 좋네요 앞으로 미적분 문제 시간되시면 또 만들어주세요~
ㅎㅎ.. 노력해보겠습니다..