★[문과] 수학적 귀납법 30초안에 푸는 방법 ★
게시글 주소: https://orbi.kr/0008138889
귀납법 글.pdf




0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
다보인다
-
아 0
에타에서 신원파악됨
-
방학이라 아직 다들 자고있나
-
현역 과탐 2
현역인 예비 고2입니다 일단 정시를 준비하고 있습니다 (이제 고2인데 수시챙겨라...
-
막판에 동홍으로 빠지면서 추합이 꽤돈것같네요
-
음지에있다는사실은 좀제외하고봣을때 남자분들이 저런몸매좋아하나요 인스타봣는데...
-
오늘은 뭐하지 12
-
그렇다
-
해줘요
-
솔직하게 고능아 인거임?
-
마음이 편안해짐요 번뇌와 걱정이 많으신 분은 특이점갤 정독 추천
-
메가스터디 패스 쓰고있습니다. 김성은쌤 - 시작하는 불꽃 개념 수1부터 끝내려고...
-
투과목은..
-
물리1 특상 0
특상 문제 중에 우주선 내부에서 빛이 가로로 왕복할 때 우주선 내부와 외부의...
-
올해 경영학과 가게 돼서 1학기 때 전공이 ‘경영학원론, 경제학원론, 회계원리’라고...
-
6월 이전까지 개념+도표+마더텅+2회독때 기출강의 하나더+수특 여기까지 하면...
-
시골쥐상경 2
찍찍
-
"폭동이라니" 반발하자…이준석, 동덕여대 찾아 "폭도들 대단" 3
동덕여대 남녀 공학 전환에 반대하는 학생들의 시위를 '폭동'으로 규정한 이준석...
-
3월부터 학원에서 계정 어차피 줘서 필요없는데 그전까지 김범준 스불 딱 하나만...
-
N수생은 앰생인거같은데 고N력자는 오랜시간동안학문을연구한연금술학자같음
-
난이도가 메쟈의>인설의>>>>>연치>>중약 인게 참 웃김 영어 1을 받은 사탐러너는...
-
다시일어남 2
-
님들 풀때 반응 태도 내면심리 성격 다 구분함?? 앞으로 혼자 풀때 그냥 다 똑같이...
-
님들 다들 ㅍ경수술함? 28
아니 갑자기 궁금해짐 난 자ㅍ인데 다들 수술했다더라
-
해외대라는게 유럽인지 호주인지 일본인지 미국인지 중국인지 동남아인지 지역에 따라서...
-
언매 선택자가 화작 선택자보다 국어를 잘하는 이유가 3
문법 때문도 있지 않을까 상위권들이 언매를 많이 해서도 있겠지만 독서 읽으면서...
-
베르테르 68번 2
음
-
저는 안씀
-
ㅇㄱㅈㅉㅇㅇ? 5
신기하네 https://orbi.kr/00070223009
-
뱃지 설문조사 2
의치한약수(순서임의) 고능 오르비언 분들은 어떤 뱃지를 끼고 다니시나요? 가령...
-
어디로 들어가야 뱃지 받는거에요
-
여사친이 뭐임 4
-
엄청어렵다는디
-
ㄱㄱ
-
인터넷에 하도 장단점 뭐시기 저시기가 많이 돌아다녀서 정신이 진짜 하나도 읍따 ㅠㅠ...
-
바로 장학주는 학원 학원비 다 높반한테 장학주는 꼴임 비싸게 다니는 꼴
-
와 클났네ㅋㅋ
-
뭐 고르실거임?
-
ㅋㅋㅋㅋㅋㅋㅋㅋ 예습의 보람이 있노 ~
-
얼버기 0
ㅇㅇ
-
우리나라에서 살 거면 SKY>>>해외 명문대죠?? 10
맞나요??0
-
여친이 꼭 있어야됨? 10
진짜 몰라서 묻는거임
-
[2026 수능 대비반 오픈] - 1기 선착순 100명 모집 (대전, 대구, 거제, 종로) 0
[2026 수능 대비반 오픈] 1기 선착순 100명 모집 (각 지역별 100명...
-
미분가능성 질문 5
f(x) = x/x (x=/=0) 1 (x=0) 이거 x=0에서 미분 가능함?
-
평생독신으로늙어죽어버려....
-
수강신청 멸망함 2
이게현실일리없어요
-
변표나오고 6칸 > 2칸돼서 포기했었는데... 묵묵히 5수.
-
엄마가 전에 그랬엇는데 ㄹㅇ인가 흠
-
[고2, 고3 내신 대비 자료 공유] 2026년 특강 국어 고3 화법과 작문 기출 문제, 고2 문학 분석 기출 문제 자료 배포 0
안녕하세요 나무아카데미입니다. 2026년 특강 국어 고3 화법과 작문 기출 문제와...
크으 이거 삽자루t한테 똑같은 팁 전수받고 안 풀리는 문제가 없었는데
ㅎㅎ삽자루샘도 이팁을 주셧군요 영광이네요똑같은팁이라닝ㅋㅋ
네 다음삽자루
ㅋㅋㅋㅋ저삽자루아뉘에요!!!ㅋㅋㅋ
고2때 분명히 수학적귀납법파트는 전부 발로풀엇엇는데 작년이랑 올해 귀납법이 잘안풀려서 엄청 고민이엇는데 잘보고갑니다 ㅎ
우왕 ㅎㅎㅎ 도움이 되셨다니 너무 기쁘네요 ^^** 저방법으로 다음 모의때 꼭 맞추세용 ♥
어ㅋㅋ 이거 제가 맨날 쓰는 방법인데ㅋㅋ 진짜 이 방법 쓰시면 미친 문제가 아니고선 못푸는 문제가 없어요! 안풀리면 그냥 전후 식 다 풀어버리면 되니까..
ㅋㅋㅋㅋ 애플사이다님도 이 방법 쓰셧군여 !! ㅋㅋㅋ 이거 짱이죠 ㅋ 그냥 풀리니까요 ㅎㅎㅎㅎ 귀납법은 틀릴 일이 없겠어요 ㅎ
원래 대부분 저렇게 하지 않나요? 근데 (시험때 시간절약 연습위해) 저렇게 하면서도 다른 한편으론 논리적 유도를 병행 하는게 사고력과 논리력 기르는데 도움 될듯요...
네 ㅎㅎ 여기에다 귀납법 증명과정 이해까지 덧붙이면 금상첨화입니당 ㅎ 그런데 저 방법을 모르는 몇몇도 꽤 있고, 저 방법이 시간 줄이는데에 많은 도움이 되어 글 올려봤어용 ㅎㅎㅎ
4점치고 엄청쉽게나와서 개꿀빠는 파트중 하나죠 ㅋㅋㅋ..
마자용 무조건 맞춰야 하는 문제입니당 !!!! 흐흐 ㅋㅋㅋㅋㅋ
와.. 정말 감사해요ㅠㅠ 저는몰랐어요ㅠㅠㅠㅠ
히힝 ㅋㅋ 저 방법두 이제 알아두시면 되겠네요 ㅎㅎㅎ 제가 더 감사해요 ㅎㅎ
저게 변변곱을 필요로하는 문제에서도 되나요?
넹 어떤 형태로 나와도 1번 2번방법 적용이 가능해여 ㅎㅎㅎㅎ
혹시 모르는 문제 있으시면 올려주셔용 풀이해드릴께여
진짜 비꼬는거 아닌데요..ㅠ
이거아니면 다른분들은 어떻게 푸시는건가요
원래 계속 저렇게 풀었는데.. 다른분들은 그럼 첫줄부터 전개하면서 하시는건가요???
너무 당연하게 생각해서;; 진짜 비꼬는거 아니에여 죄성합니다 ㅠㅠ
ㅎㅎㅎㅎ 저렇게 접근하면 바로 풀리는데 귀납법 증명의 원리로 접근하다보면 괜히 어렵게 풀게되는 면이 있어여 ㅎㅎ
증명의 원리를 모르고도 단순히 저렇게 풀수 있다는게 함정이져 ㅋㅋ
귀납법 증명의 원리로 전개한게 저 빈칸 전개과정이고
우리는 그거보고 적으면되는데 원래 저렇게 등식인걸 확인하고 푸는거지않나요?
다른풀이가 있나요?? ㄷㄷ
등식인건 당연한게 맞죠
근데 등식인걸 이용해서 안풀릴경우 맨위로 올라가는거를 놓치시고
고민을 길게 하시는 분들이 있어서 올렸어용
그냥 증명 과정 따라가면 식이 보이기도 합니다 ㅋㅋ 뭐하러 전개까지....
가끔 점화식문제들 보면 일반항 유도 기교에 감탄이 나올때가있죠...ㅋㅋ 문제 나올때마다하나씩 배우곤 합니다.
ㅎㅎㅎ 마자용 원래 귀납법이 빈칸문제로 나오기 전에 점화식이 빈칸문제로 나왔었죠 ㅋㅋ 이제 귀납법이 대세니 ㅋㅋㅋ 글 도움되셨으면 합니당 ~! ㅎㅎ
ㅋㅋ 전 수험생은 아닌지라... ㅠㅠ 암튼 글은 잘 읽고갑니다
아항 그러시군요 ㅎㅎㅎㅎ 봐주셔서 감사해용~~~~ ㅎㅎㅎ
하..이거 3월모고에서 식하나로 합쳐서 계산하려니까 계속안되서
결국 10분만에 그냥 식 따로놓고 주어진숫자 대입해서 풀어보니 나오든데..ㅠㅠ 왜그런거지..
식을 하나로 합치다가 계산이 꼬인거 아닐까요? ㅠㅠㅠ
다음 모의때도 귀납 나올테니 저 방법으로 연습하구 시험봐용!!! ㅎ ㅎ
이과 수학 가형도 적용되나요?
이과수학 가형 고2학년까지만 나오구여 ㅎㅎ
수학적 귀납법은 수2과목이라,,, 문과수학 범위에 해당합니다
이과는 미적2확통 기벡이니깐여... ㅎㅎㅎ
1번은 알겠는데요
2번-> 맨위로 올라가서 일반항 확인하기
이게 무슨뜻인가요?
1번방법으로 안되는데, 맨위로 올라가서 일반항을 확인하면 무슨효과가 있나요?
(제가 제일 못하는 유형이에요 ㅠㅠ )
아 그리고 올해부터는, 그러니깐 작년까지는 저런 빈칸문제가 계속 점화식 일반항 구하는거였잖아요( 축차대입해서 구하기)
근데 올해는 그냥 귀납만 하면 되는건가요?
좋은 질문 주셧네용!!
작년까지 점화식으로 빈칸문제가 나오다가 아마 이제 안나올겁니다
개정되서 점화식 일반항 구하는 중요도가 떨어졌거든요
이제 귀납법 빈칸문제 공부하셔야해여!! ㅎㅎㅎㅎ
그리고 2번 맨위로 올라가서 확인하라는 거는 똑같은 형태를 확인하라는 건뎅..
제가 글수정해서 그림을 올려드릴게요..... ㅎㅎㅎㅎㅎㅎ 댓글에 사진첨부가 안되네요 ㅋㅋㅋ
와 ㅠ 정말 친절하시네요!! 감사합니다!!!!
윗 댓글들 관련해서 코멘트 하자면
사실 방법 자체는 정석 대로 푸는 거랑 차이가 없는데 결국 과정을 전부 이해할건지 답을 찾는 데 주목할 지 차이에요
어차피 맨땅에서 끌어내는건 논술급이고 일반적인 상위권은 이해하려고 해도 저 과정 거치면서 이해할테니 방법적으로는 같을 겁니다
물론 저 과정 전체를 따라가지 못하는 레벨에서 문제는 풀 수 있게 해주니
좋은 팁인 건 맞습니다~
오ㅎㅎㅎ 멘토님이신가봐요!!! 코멘트 넘 감사드려여.. 저보다 말씀 잘하시네요 ㅋㅋㅋ
증명과정 자체를 따라가는 것이 어려운 몇몇이 있어서 제 팁이 도움이 될까해서 올렸어여 ㅎㅎㅎ
넘 제가 하고싶은 말을 해주셨네여 감사해여 ^^
자루형ㅎㅎㅎ
삽자루샘과 같은팁이라니 ㅋㅋㅋ 호호
부등식의 경우에도 쓸 수 있나요?
네!!부등식도 똑같아요!! 그대로하면됩니당ㅎㅎㅎ
오오...... 방금 전까지 귀납법 풀다가 멘탈 나갔는데 여기서 치유받네요 ㅎㅎ
와우 ㅋㅋ 치유되셨다니 ㅋㅋㅋ 다행입니당 ㅋㅋㅋㅋㅋ 스티브잡스님 ㅋㅋ 저방법하면 다풀리니 마니풀어보셔용 ★
조금만 더 상세히 본문 내용을 설명해주실수 있나요?
아 다시 보니 이해가 되네요.
소경님 안녕하세요 이해 잘 되셨나용 ㅋ 저 방법으로 하시면 시간 마니 줄이실 수 있으니 마니 풀어보시고 연습하세용~ ㅋㅋ
답이 12..?
이거 저번에 봣는데 대충 보고 넘어갔다가 오늘 모평에도 나와서 이 글 다시 찾아봣네용ㅋㅋ 저번 시험지 펼쳐들고 보니 16번 옆에 문제풀다 빡쳣는지 ㅅㅂ이라 써져잇네요ㅋㅋ 수학고잔데 이렇게라도 1문제 맞출수 있는 희망 주셔 감사합니당♡♡
ㅋㅋㅋ 저번에 ㅅㅂ,,, ㅋㅋㅋ 고생하셨군요 답 12맞아요!! ㅎㅎㅎ 오늘도 귀납법 또나왔죠?? 저방법대로 했으면 맞았을껀데 ㅋㅋ ㅠㅠㅠ 희망이 되었다니 제가 다 고맙네영 ♡♡ 다음에 시험에 또나올꺼여요... 완전 마스터해노세요 ! 이거는 맞출수있는 4점이에요 ㅎㅎㅎ
제가 씨리얼 기출문제집으로 귀납법 문제를 쭉 풀고잌ㄱ는데 이 방법으로 안풀리는 문제가 훨씬 많은거 같아요 ㅜㅠㅠ 선생님이 틀리셨을리는 없구 제가 이용을 잘 못하는거 같은데 엌덕하죠?? ㅜㅜ
그래서 저는 증명 쭉 따라가는 방식으로 풀었엉욘 ㅜㅜ
귀납법 문제에 칼럼링크타고왔네요ㅜㅠ 이제야 알다니 금손 더럽♡