[규토] 공간도형과 벡터 자작문제 12 (해설첨부)
게시글 주소: https://orbi.kr/0007826079
공간도형과 벡터 자작문제 12 문제지+해설지.pdf

0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
실력 부족이 아니라 그냥 현장감에 대한 준비가 덜 된 거임 모의고사 통으로 푸는...
-
사탐은 쉬웠던것같음 특히 생윤너무 쉬워서 당황함 ㅅㅂ근데 국수가 왜이러지..눈이이상한가
-
아직 실력이 많이 부족하네.... 최근에 폼 오른거 같았는데
-
솔직히 난 어려웟는데 ㅠ
-
[단독] 민주 집권 플랜... 방첩사 3개로 쪼개고, 검찰은 공소청 격하 4
국회가 감사원 통제...“적폐청산 시즌 2″ 더불어민주당이 집권하면 군...
-
곧 중간고사 시즌이잖아요 수시 버리고 정시해도 되냐는 글이 쇄도할거임
-
언매 80 사문 41 정법 32 수학은 안봐도 4등급이라 걍 안적음
-
생명 얘기가 단 하나도 없네..
-
성대 가즈아 1
가즈아!!! 난할수잇다!!
-
6평은 망쳐도 괜찮다구요?? 9평은요?? 수능 때는 되는 거 맞죠? 선생님??
-
와 똑같은건 내년에 안나온다지만 적분 개고자라 꼭 정복했어야하는데 드디어 해냈다 씨빠알!!!!!!
-
에휴 0
평생 안잊겠다
-
ㅈㄱㄴ
-
구라아니고 개망함… 언매 64 (미친거야..난.. 미적 84(실수도 함.. 영어...
-
재수생입니다 국어 98 수학 76 영어 1 생윤 30 사문 44
-
4덮 경제 3
허허 별표 5개치고 강렬히전사 한 번호로 찍을걸 그랬나
-
계실까요?? 사설 말고 작수나 평가원 1 한 번이라도 있으신 분 많이 볼 수 잇게 좋아요 ㄱㄱ
-
매도니 매수니 나스닥 숏 말하는건가 싶으면 갲우
-
4덮 물리 2
저만 개 어려웠나요..
-
더프 외부생 2
5덮 외부생 볼 수 있는곳 있을까요.. 원래 러셀에서 봤는데 5월은 안본대서요 ㅠㅠ
-
나만 3번한거야?
-
4덮 결과 1
언매 92(7, 12, 21틀) - 평이한 시험지 기하 80(15, 22, 28,...
-
그런건 없고 제 아내나 보고가세요
-
화작 미적 생 지 70 84 73 34 33
-
4덮 미적 2
77점이몀 무보정으로로 2컷 가능할까요...?
-
사탐런... 2
아니 나 같은 저능아들만 사탐으로 튄 줄 알았더만 4덮 점수 기준, 언매 90,...
-
4덮 슬프다.. 0
화작 79 미적 84 영어 84 화1 36 지1 31 탐구 진짜 화딱지나네
-
심평들 일루와 4
우린 평가원만 보고 달린다
-
ㅆ발 그래야만함.
-
언매 다담 800제로 1회독 끝나가는데 이거 끝나면 뭐 풀어야하나요? 기출...
-
풀지도 못하는데 있음
-
ㅇㅇ
-
좌절감 들어요… 괜히 학교 안 가나 싶고…
-
언 77 확 84 영 86 생윤 48 윤사 33
-
아니 시발 화작 1번틀 뭐냐
-
국어가 불독서 가능성이 있다는데 님들은 어떡개 생가캄?
-
언매 81 미적 80 영어 85 화학 44 생명 43 더프 실전에서 보니까 만만치...
-
4덮 문학 1
저 같은 사람은 없나요 다른 세트는 다 맞았는데 고전시가 + 수필 세트에서만 3개...
-
지구 하 3
38점 맞냐 이거
-
4더프 국어 5
독서론 3번 언매 2개 틀려서 92점인데 독서론 3번 해설봐도 내가 맞는거 같은데...
-
미적낮2 베이스 6모이후 미적 과탐 조지면 확통 사탐런할까싶은데 1통이 가능할까요 국어는 보통1띄움
-
더프 수학 0
80인데 1 ㄱㄴ? 15 21 22 28 29틀 미적
-
ㅈㄱㄴ 제가 난이도 체감을 잘 못해서;;
-
어떻게 풀지는 대가리로 30초? 1붘 정도 걸렸던 거 같은데 중간에 계산 실수해서...
-
언매 예상 부탁 0
작수 5등급 --> 언매 4덮 79점 보정 몇등급 뜰까요??
-
몇주동안 역학만 공부했더니 1페 비역학 3틀 2페 비역학 2틀 다른거다맞음 ㅅㅂㅋㅋㅋㅋ
-
27번 ㄹㅇ 음함수로 하다가 식이 안나와서... 다시보니까 아니엇음ㅋㅋ
캬..좋은 타이밍에 들어왔네요.
좋아요 박고 문제 다운받아갑니다
감사합니다~ ㅎㅎ
문제 괜찮네요.
처음에 풀때 아무 생각없이 풀었더니 '음? 왜 cf>0 이라는 조건이 쓰이는 곳이 없지? 내가 잘못풀었나?' 싶어서 답만 확인해보니까 역시...
멍청하게 생각없이 문제에 달려들지 말고 하나하나 다 따져가면서 풀어야 겠다는 교훈을 얻었습니다.감사합니다.
ㅎㅎ 풀어주셔서 감사합니다~ 문제지 양식 다시 바꿔서 첨부했어요~
개정 교육과정에 맞는 문제인가요? 맞다면 한 번 풀어보고싶네요~
반각이 있긴하지만 덧셈정리로 충분히 유도할 수 있다고 생각해서 넣었습니당~
틈틈이 한 번 풀어볼게요~ 감사합니다^^
제가 더 감사합니다~ㅎㅎ
확실히 난이도가 수능을 한참 넘어서는 군요ㅠㅠ 겁없이덤볐다가 으억
풀어주셔서 감사합니당~ ㅎ
답지안보고 푼 보람이 있네요!! 드디어 답냈습니다 ㅠㅠ
크 멋지십니다 ㅎㅎ 생각하기 어려우셧을 텐데 ㅎㅎ
두 원판이 저렇게 평면상이 아닌 공간상에서 접하는 것을 교과과정으로 설명할 수 있나요?
주어진 조건에 따라 만족하는 원판그림은 한개밖에 되지않는다고생각해용 충분히 직관적으로도 이해 할수있다고 생각해용
냠냠
믿고 쓰는 단면화 문제군요.. 전 임의의 법선벡터 (a b c)로 놓고 구했는데 숫자가 깔끔해서 바로 나오긴했는데 풀이를 보니 3등분이 되는걸 이용하신게 의도군요.. 발상이 어려울것 같은데..ㅠ 항상 좋은문제 감사합니다!
저도 다시풀어봤을때 어렵더라구요 ㅎㅎ 감사합니당 ~이런문제도 있구나를 알려주고싶었어용 ㅎ
제가 답지와 나온 것과 다르게 풀었는데요.. y+z+d=0 까지는 나왔는데 d의 경우의 수가 -2와 0 두가지가 나오더라구요. 답지를 보니 좌표로 풀이가 되어있던데 저는 좌표를 두 직선 교점 이용할 때 빼놓고는 사용하지 않아서 두 가지 중 하나를 추려낼 수 가 없더라구요. ㅠㅠ 혹시 제 풀이 좀 봐주실 수 있나요??
아마 직선 방향백터 두개 구하시고 법벡구하신것 같고 알파 평면거리쓰셔서 두개나오신것같아요 ㅎ 근데 결국 추려내려면 평면위 한점을 알아내야하는데 결국 좌표로 접근할수밖에 없어용
으으 그렇군요 ㅠ 아직 좌표랑 접목시켜서 생각하는게 좀 힘드네요 ㅠㅠ 좋은문제 만들어주셔서 감사합니다!!!! 방금 닉변해서 닉이 다릅니다 ㅎㅎㅎ
저도 그렇게 접근했었는데..d=0이면 cf>0 이라는 조건을 만족하지 않습니다.
※그리고 법선벡터가 (0,1,1)하고 (1,0,0) 두개 나오는데 (1,0,0)으로 잡으면 답이 이상해서(...) (0,1,1)으로 잡았는데 yd9353님은 이거 어떻게 처리하셨나요? 처음 풀었을때 부터 계속 이게 맘에 걸리더군요..지금도 고민중이고요.
저는 주어진 직선 m,n에 평면 법선벡터 코사인 구해서 두개는 같다고 놓고 풀었습니다. 그러니까 ax+by+cz+d=0 으로 놓구 (1,1,1)과 (-1,1,1) 이 두 직선과의 코사인을 루트2/루트3 이렇게 하면 a+b+c=-a+b+c 라구 나오더라구요. 그래서 당연히 a=0이구나 해서 (0,1,1)로 놓고 풀었습니다!!
방향벡터 두개 더하면 (0.1.1) 나와용~ 평행사변형 법으로 두개의 벡터를더하시면 법벡나와용
와 그렇게 쉽게 구하는 방법도 있네요... ㅋㅋ
흐익..죄송합니다. 댓글 단다는거 실수로 신고 눌렀네요..ㅜㅜ 졎지님, 의도적으로 신고한거 아닙니다..ㅜㅜ
평행사변형법으로 더하면 되긴 한데 문제는 벡터의 방향처리가 껄끄러워서요..
두 벡터의 종점이 모두 원판을 뚫고 나가면 (0,1,1)로 처리해주면 되는데 한 벡터는 원판을 뚫고 나가고 다른 한 벡터는 원판을 뚫고 들어오면 (1,0,0)으로 계산해줘야 되는거 아닌가..해서요.(그러니까 (1,1,1)-(-1,1,1) 이렇게요)
혹시 제 생각이 불필요한 것이었나요..?
(1.0.0)이라고하면 x=a라고 생각할수있는데요 p점이 그위에있으려면 a=0이되야하는데 그럼 알파평면과 교점의 최단거리가 루트2/2 가되지못해용
아..그렇군요..그렇게 확인하면 되겠네요.막힐때마다 문제 조건을 다시 보면서 체크해나가야 겠군요..ㄷㄷ
규토님하고 잘하고싶다님 두분 다 답변해주셔서 감사합니다!!(^_^)
항상 드는 생각인데 모의고사나 n제 출판 생각 없으세요?? 문제가 정말 좋아서요ㅎ
좋은말씀 감사합니다 ㅎㅎ n제는 문제가 더 쌓이면 도전해보고싶고 실모도 기회가 된다면 도전해보고싶네요 ㅎㅎ 작년에는 과외받다보니까 모두 고3문과 학생들이엿습니다. 1등급을 가르는기준이 21번이라고생각했고 30번은 공부해도 맞출확률이 낮다고판단하였습니당 ㅎ과외학생들을위해서 실모를 제작하기보다는 집중적으로 21번을 공략하는것이 낫다고판단하여 21번형문제만 만들었습니다
대단하시군요.. 느끼는거지만 문제 만드시는데 능력이 상당하신것같네요.. 교재 기대할게요ㅎ
좋은말씀감사합니다~ㅎ
깔끔깔끔 좋은문제 감사합니다!!!
제가 더 감사합니다~ ㅎ
ab ac가 지름이라는거 못보고 아니 식이 왜 하나 없지??? 이러면서 헤맸네요 ㅋㅋㅋㅋ 아 깜짝놀랐네 아무튼 좋은 문제 감사합니다
ㅎㅎ 감사합니당~
두 직선의 방향 벡터를 더하면 평면의 법선벡터 나오지 않나요??
네 위에질문에도있듯이 2개중에 (0.1.1)만되용근데 법벡만으론 문제를 풀수없어용
문제좋당
문제좋당
공간도형과 벡터 자작문제 13도올렸으니까 풀어보시면 좋을것 같아요~
자작모음이라고 쓰신 글 담에 올리신 문제들은 자작모음에 포함되지 않은 것들인가요?
네 ㅎ 모이면 또 올려드릴게요. 이때까지 만든 자작문제들중 개정 교과에 들어가는 부분만 오르비에서 책을낼 예정이에요.현재 원고작성 중에 있구요. 다음주중에 오르비에 원고 제출예정이에요. 예상 5월달 쯤 책이 나올것같아요. 기존의 해설지와 차별화를 두기위해 총력을 기울이고 있어요. 규토에게 직접 과외받는듯한 해설지. 빵빵한 해설지 저자와 소통하는 해설지를 만들고자 노력하고있어요.