261114 초보자 가이드
게시글 주소: https://orbi.kr/00077545664

21번에 비해 상당히 가벼운 문제지만
미안사가 아주 아주 친절하게 풀어드립니다. (초보자도 연습하면 현장에서 기용할 수 있게)
개인적으론 굉장히 필연적인? 느낌을 받으며 풀 수 있는
수학1 도형의 교과서적인 문제라 생각하기에 한 번 다뤄보겟습니다
0. 기본개념
기본적인 개념만 짚고 넘어갑시다.
우선 수학1 도형에 등장하는 도형은 단 두가지밖에 없습니다.
바로 삼각형과 원이죠. (사각형은 삼각형 2개, 오각형은 삼각형 3개,... 입니다)
이제 삼각형과 원이 어떻게 결정되는지 알아보죠.
0-1. 삼각형
SAS : 변 2개와 끼인 각이 결정되면, 삼각형이 결정된다.
SSS : 변 3개의 길이가 결정되면, 삼각형이 결정된다.
ASA : 두 개의 각과 하나의 길이가 결정되면, 삼각형이 결정된다.
중등 도형이고, 그냥 외우시면 됩니다. (증명은 cos법칙을 떠올려보시면 당연합니다.)
Tip) 삼각형의 닮음 조건에 + 길이 하나가 결정되면 삼각형은 결정된다.
문제가 보이는 시야에 큰 도움을 줄 겁니다.
닮음 조건도 짚고 넘어가죠.
SAS : 변 2개의 길이 비율과 끼인 각이 결정되면, 삼각형의 '모양'이 결정된다.
SSS : 변 3개의 길이 비율이 결정되면, 삼각형의 '모양'이 결정된다.
AA : 각 2개가 결정되면, 삼각형의 '모양'이 결정된다.
닮음 조건이 삼각형의 모양을 결정해주고, 길이 하나가 삼각형의 크기를 결정해준다 보면 됩니다.
0-2. 원
정말 별거 없습니다. 원은 중심과 반지름이 결정되면 결정됩니다.
원을 제시하는 방법 3개만 알아보죠.
0-2-1 : 원의 중심과 원 위의 한 점이 결정되면, 원이 결정된다.
0-2-2 : 원 위의 세 점이 결정되면, 원의 중심이 결정되고, 0-2-1과 같은 상황이 된다. (외심과 외접원)
0-2-3 : 원의 중심과 반지름의 길이가 결정되면, 원이 결정된다.
1. 결정해가며 조건 해석하기
이제 앞서 말한 삼각형과 원을 결정해가며 (이 과정을 펜을 종이에 대기 전에 생각하는게 목표입니다.)
이 문제가 어떻게 풀리는지 알아봅시다.
아래 말하는 사고 흐름을 할 수 잇도록 도형 문제들을 연습해주면 됩니다.
초보자 가이드기에 과하게 친절하여 오히려 복잡해보일 수 있습니다. (넘 헷갈리면 댓글로 질문하세용)
하지만, 하나하나 따라가면서 감에 의한 것이 아닌
필연적으로 문제가 풀리는걸 이해해봅시다.
한 번 천천히 이해한 다음에 다시 읽어보면, 이 사고가 1분도 안 걸려서 완성될 수 있다는걸 알 수 있을거에요
1-1. ABC 삼각형 결정
문제 조건에서 AB, BC, 끼인각B가 제시되었습니다. (SAS)
1-2. 아래 작은 원 결정
문제 조건에서 원의 중심A, 반지름 길이 AD(AB길이의 2/3으로 제시)가 제시되었습니다.
1-3. 삼각형 CGA 결정
문제 조건에서 CG, 1-1에서 CA, 1-2에서 AG가 결정되었습니다. (SSS)
1-4. CGE 삼각형 결정
문제 조건에서 CG, CE (CA-AE), 1-3에서 각 GCE가 결정되었습니다. (SAS)
1-5. 위 큰 원 결정
CGE의 외접원으로 결정되었습니다.
1-6. 삼각형 CGH 결정
문제 조건에서 각HCG, 1-5에서 각 CHG, 문제 조건에서 CG가 결정되었습니다. (ASA or AA닮음에 길이 하나)
삼각형 CGH가 결정되었으므로 당연히 길이 GH도 결정되었음을 알 수 있습니다.
2. 계산~
위에서 얘기한대로 쭈욱 계산하면 됩니다.
계산 방법은 지금까지의 경험 차이에 따라, 사람마다 차이가 날 겁니다.
아무 방법이나 하나 보이는 대로 계산해보죠.
삼각형 CGA에서, cos법칙에 의해
cos(GCA) = 3sqrt(6)/8
삼각형 CGE에서, cos법칙에 의해
GE = sqrt(6)
GE길이는 sqrt(6), sin(GCE)는 sqrt(10)/8, sin(HCG)는 4/5이므로, sin법칙에 의해
GH=32sqrt(15)/25.
여기서는 sin법칙을 잘 활용해서 1-6에서의 CGH를 결정하는 계산을 줄였습니다.
(1-6에서의 접근 말고, CGE의 외접원 위에 원주각이 결정됐을 때 길이를 구하는 접근이라 보면 댐)
이는 sin법칙을 잘 활용한거라고 보면 되고,
sin법칙 활용도가 미숙하다면, CGH를 결정하면서 풀어도 크게 시간 차이는 안 날 겁니다.
(대충 road map은 cos(GEC)를 cos법칙으로 구하고 sin법칙 써주면 됩니다.)
그래도 sin법칙을 활용하여 계산을 줄여주는 방법도 알아는 둬야겟죠.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
3시 수면열차 탑승 7 1
잘자요
-
에휴 씨발 ㅈ 같은 입시 7 2
개같은 입시 ㅈ같은 입시
-
새르비는멈추지않아 4 0
느움
-
소신발언 하자면 6 2
집창애정결핍순애피폐gl물에 퍼리 한숟가락 섞으면 그것만큼 맛있는게 없음 참고로 난 호날두 좋아함
-
인스타노래에 락 올리면 락찔이같냐 10 0
이미 개많이올렷엇어 ㅋㅋㅋㅋㅋㅋㅋㅋ
-
자고일어나면 8 3
백발벽안미소녀로ts되어잇을가능성없나
-
새르비는 나의 세상인데 하 씨발.,,;ㅣㅔㅓㅐㅑㅏㅓㅓㅑㅏㅐㅣㅏㅓ 개학...
-
거의 본인인생 주제곡인듯 ㅋㅋ 크리스마스에도 들었고 생일 때도 들어야겠노
-
새터 특 5 0
밤 새고 가도 됨
-
일단 당장 내일 5 1
마피아게임이랑 응원가맞히기 안해도 돼서 너무 좋음
-
진짜로 생각이 없음 영어도 비슷한 느낌으로 풂 문풀 순서도 그냥...
-
조선대 치대 폭로 10 2
-
무슨일이생길ㅋ까 약이늘어날거같긴함 일단
-
고사회 예비1번 근황.jpg 3 0
재업합니다. 대신 전해요~
-
부남 풍채유지 ㅁㅌㅊ? 10 2
아흐 어흐♡
-
우리학교는오르비에없나 7 1
애니프사오르비언후배안들어오나...
-
내 선택과목은 8 0
언기물2화2 내일은 기하 화2 공부할거임
-
신검장에서 딸치면 4급받냐?
-
초록색 올해 초중반까지 내가 자습으로 따로 풀어야 하는 것 노란색 그냥 매일,...
-
추합도안되고 5 0
오늘 남자친구랑도 헤어지고 너무힘들다
ㄱㅅㅎㄴㄷ

필요했는데 너무 감사삼각형의 완성 조건은 3개
토막난 삼각형이랑 원내접사각형은 4개..

넘 헷갈린데 질문할래요이문제 현장에서 안풀린 순간부터 재수의 운명을 받아들임
비들기야ㅠㅠ
잊을수없는문제....