내 소식

유카리 [1442253] · MS 2026 · 쪽지

2026-01-19 01:03:51
조회수 19

모밴

게시글 주소: https://orbi.kr/00077101604

콜라츠 추측의 비밀


1. 콜라츠 추측(3n+1)은 3n+3 그래프의 일부이며, 3n+3은 3n+9 그래프의 일부이며, 3n+9는 3n+27 그래프의 일부이다.


2. 이에 따라 콜라츠 추측은 3n+3^k 수열의 특수한 경우라는 것을 알 수 있고 이를 확장 콜라츠 추측이라 하자. 확장 콜라츠 추측은 모든 자연수가 3^k에 도달할 것이라는 추측으로 자연스럽게 정의된다. (k가 0인 경우는 3^k=1이고 이 특수한 경우가 원본 콜라츠 추측이다.) 이 확장 콜라츠 추측을 a_n 수열로 정의하자.




3. 확장 콜라츠 추측에서 모든 자연수는 순환회로에 빠지지 않고 결국 3^k를 인수로 갖는다. 이전 수와 소인수 3의 개수가 달라 현재 수와 같을 수가 없다는 매우 단순한 논리이므로 이 증명은 생략한다. (홀수 규칙이 시행되면 3 인수가 2개 이상 부족하다면 3을 하나 더 인수로 갖고, 3 인수가 1개 부족한 경우 인수를 1개 이상 점핑할 수 있다는 것도 알아는 두자.)


4. 3^k를 인수로 갖는 순간부터 확장 콜라츠 추측 3n+3^k는 원본 콜라츠 추측과 완전히 같은 개형을 띈다. 임의의 홀수 m에 대하여 m*3^k라면 이는 3^k(3m+1)이 되고, 임의의 짝수 m이라면 그냥 2로 나눠지기 때문이다.


5. 이에 따라 자연스럽게 3^k를 거추장스럽게 달고 있을 필요가 없다는 아이디어를 떠올릴 수 있다. 이를 a_n을 3^k로 나눈 b_n으로 정의하자. (b_n은 a_n으로부터 유도되었으므로 항상 기약분수이다.)




따라서 

이고, a_n을 b_n으로 나타내면



이고, 이는 원본 콜라츠 추측과 정확히 같다(!) 즉 우리는 콜라츠 추측의 확장과 압축을 둘 다 경험했다. 


6. b_n에 의하여 우리는 콜라츠 추측이 참이라면 콜라츠 추측의 규칙이 3의 제곱수를 분모로 하는 임의의 양의 유리수에 대해서도 1에 도달할 것임을 알 수 있다.


5/27을 예로 들자.



7. 이때부터는 정리를 하겠다.


8. 콜라츠 추측(모든 수는 1에 도달한다.)이 참이라면 확장 콜라츠 추측(모든 수는 3^k에 도달한다.)이 참이며, 확장 콜라츠 추측이 참이라면 콜라츠 추측이 참이라는 두 명제는 참이다.


9. 콜라츠 추측이 참이라면 3n+3^10000이라는 무지막지한 규칙도 순환하거나 무한대로 증가하지 않고 결국 3^10000에 도달한다.


10. 압축 콜라츠 추측 b_n은 확장 콜라츠 추측을 단순하게 볼 수 있다는 장점이 있지만 이것이 콜라츠 추측을 직접적으로 해결하지 못한다. 결국 자연수 조건에 빠져드는 순간부터 원본 콜라츠 추측과 동형이기 때문이다.


11. 의심되면 직접 3n+9 같은 게 결국 9가 되는지나 7/81 같은 게 b_n에서 1에 도달하게 되는지 해보자. 



0 XDK (+0)

  1. 유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.