[무료배포] 우일신 파이널 모의고사 시즌2 1회
게시글 주소: https://orbi.kr/00075011935
우일신(又日新) 파본형 월간 N제 1월호 : https://orbi.kr/00072113025
우일신(又日新) 파본형 월간 N제 2월호 : https://orbi.kr/00072313277
우일신(又日新) 파본형 월간 N제 3월호 : https://orbi.kr/00072684885
우일신(又日新) 파본형 월간 N제 4월호 : https://orbi.kr/00072906671
우일신(又日新) 파본형 월간 N제 5월호 : https://orbi.kr/00073133759
우일신(又日新) 파본형 월간 N제 6월호 : https://orbi.kr/00073363460
우일신(又日新) 파본형 월간 N제 7,8월호 : https://orbi.kr/00074070430
우일신(又日新) 파이널 모의고사 시즌1 1회 : https://orbi.kr/00074312430
우일신(又日新) 파이널 모의고사 시즌1 2회 : https://orbi.kr/00074404805
우일신(又日新) 파이널 모의고사 시즌1 3회 : https://orbi.kr/00074481346
[11/13] 26 수능이 시행됨에 따라 자료를 내립니다. 감사합니다.
오랜만이네요. 안녕하세요, 띵커스입니다! 대략 한 달만에 돌아왔습니다. 이제부터 하나씩 시즌2(3회분) 배포를 시작합니다. 오늘은
[우일신 파이널 모의고사 시즌2 1회]
를 공개합니다. (선택과목은 확률과 통계와 미적분만 출제하였습니다.)

올해 6/9평에 등장한 새로운 경향을 반영함과 동시에 기존의 기출 틀에서도 크게 벗어나지 않는 익숙함도 담고 있는 시험지입니다. 많이많이 풀어보시고 후기글도 남겨주시면 앞으로의 문항 개발에도 큰 도움이 됩니다.
2주 간격으로 새로운 시험지를 또 가지고 오겠습니다. 좋아요, 팔로우를 누르시면 놓치지 않고 소식을 받아보실 수 있습니다. 감사합니다.

0 XDK (+200)
-
100
-
100
-
독재학원에서 간식 15 0
현역 방학 한달을 독재학원에서 보내려고 등록했고 내일부터 가는데 제가 공부하다가...
유일신 너무 좋아서 도티낳음 호잇짜

잘 풀겠습니다와 22 지수로그에 28 항등식 미분이네 개고트

캬 고트 오셨다낼 바로 인쇄 벅벅

꼭 풀어야지.하하 감사합니다!!!! 혹시 해설강의 촬영계획은 없으신가요! 또 등급컷예상은 어찌되시는지요!!
올해 배포하는 자료에 대해선 해설 촬영 계획은 없습니다 ㅜ 9모 등급컷을 고려해볼때 시진2 1회 시험지 1컷은 확통 92, 미적 88 정도로 예상합니다!
항상 좋은자료 감사헙니다
미적 기준 88~89쯤 될듯요.(수능 표본)
공감합니다 ㅎㅎ
감사합니다 근데 파본형이 왜 파본형인가요?
1월호 ~ 8월호 내지 컨셉이 시험지의 일부만 따온 파본 느낌이라 네이밍을 파본형으로 지었습니다 ㅎㅎ

잘풀겠습니다 감사해요감사합니다 선생님.

캬 드뎌 나왔군요!!기조는 유지하되 9평보다는 어려운 난이도였어서
100(100) 96(100) 92(99) 88(98) 1컷 84-85 봅니다
가이드라인 제시해주셔서 감사합니다!
28번 마지막에 cosf(0)=cosf(1)=1 에서
f(0)= -2n파이 / f(1)=2n파이
이런 경우는 안되는건가요?
바로 f(0)=f(1)=0 이라는게 좀 어렵습니다
조건 (가)에서 제시된 항등식이 주어진 구간내의 모든 실수 x에 대하여 성립해야 합니다. 이때 tan f(x) 의 형태에서 f(x)가 tan의 정의역으로 들어가있음을 알 수 있습니다. 이는 곧, tan가 잘 정의되는 -pi/2<x<pi/2 또는 pi/2<x<3pi/2 구간에 f(x)의 치역이 포함되어야함을 알 수 있습니다. 그렇지 않다면, tan f(x)가 정의되지 않는 순간이 발생하니까요. 만약 말씀해주신 것처럼 f(0)=-2n파이, f(1)=2n파이처럼 정해져버리면 tan가 정의되지 않는 x=pi/2 + kpi(단, k는 정수) 꼴에서 f(x)=pi/2+kpi가 되어버리는 순간이 발생하게 됩니다. 이런 상황이 발생하지 않아야하므로 f(x)의 치역은 tan가 문제없이 잘 정의되는 구간의 부분집합으로 들어가야하며 그런 상황은 f(0)=f(1)=0뿐입니다. (tan와 f(x)의 치역의 관계에 대한 고찰은 260928미적에 출제된 요소이고 이를 활용하여 제작한 문제입니다)