[칼럼]연속성과 미분가능성(Apocalypse-II)
게시글 주소: https://orbi.kr/00075011440
오늘 10월 10일에는
연속성과 미분가능성에 대해 정리해 본
자료집을 공유해드리도록 하겠습니다.
①극한값 존재⇒연속⇒미분가능
포함관계에 대한 간단한 벤 다이어 그램입니다.
다들 한번쯤은 보신 친숙한 그림이죠?
(넘어가도록 하죠.)
②연속이면서 미분 불가능한 두 후보
연속이면서 좌미분계수와 우미분계수가 서로 다른 첨점도 있지만,
기울기가 무한대가 되어 발산해버리는 점도 연속이지만 미분 불가능한 점입니다.
(부정형이 아닌 상태에서 기울기의 분모가 0이 되는 상황도 기울기가 무한대로 발산하는 상황에 포함됨)
③ (당연하니까 설명은 PASS)
④ (당연하니까 설명은 PASS)
아 물론 분모가 0이고 부정형이 아닌 점은 아까 말씀드린
기울기가 양이 됐든 음이 됐든 아무튼, 무한대로 발산하는 지점을 말합니다.
⑤다음은 연속함수들로만 정의된 함수를
평가원이 불연속으로 개조하는 방식입니다.
첫번째로는, 함숫값(y)이 0이 될 수 있는 가능성이 있는
연속함수를 분모 위치에 두는 방법이 있습니다.
두번째로는, 구간별로 정의된 함수로 연속함수를
서로 이어지지 않게 찢어버리는 방식이 있죠
(그 아래의 기울기가 ∞인 점에서 미불인 건
아까도 말씀드린 당연한 사실이니 PASS)
⑥절댓값으로 함수를 접어올려 그래프를 관찰해야 하는
상황이 종종 있죠. 이때 접어올린 점이 미가가 되기 위한 조건은
다음과 같습니다.
⇒접어올리는 점 중에서 관찰할 위치는 절댓값 함수니까 함숫값이 0인 지점의
미분 가능성을 관찰하겠죠? 우선 함숫값이 0이면서,
⇒ "접어올리는 점의 순간변화율, 즉 그 순간에서의 기울기가 0이라는 조건도 함께
만족하면 미불이 아닌 미가가 됩니다. 그 예시로는 접하는 점을 들어올릴 때 미불이 아닌 미가인
경우를 들 수 있겠죠."
⑦
아까 ⑥번에서
"접어올리는 점의 순간변화율, 즉 그 순간에서의 기울기가 0이라는 조건도 함께
만족하면 미불이 아닌 미가가 됩니다." 라고 한 말 있죠?
그것을 변곡점에 적용해보면, 변곡점을 접어올릴 때, 그것이 미가인지 미불인지에 대한
확실한 판단(물론 직관적 관찰로 바라보는 방법도 있지만 조금 더 확실한 방법)을 하시는 데
응용해보실 수도 있습니다.
아까 드린 말씀에 따르면, 삼차함수의 변곡점은 접어올렸을 때 미불일 수도 있고
아닐 수도 있다는 결론이 도출됩니다.
단, 일반적으로 변곡점은 접어올릴 때 미불이 된다고
할 수 있지만, 변곡점을 접어올릴 때 변곡점에서의 기울기가 0이 되는 특수한 상황이라면
⑥번에서의 "미불이 아닌 미가가 될 조건"을 만족하는 변곡점이 되기 때문에 그 변곡점은
예외적으로 미불점이 되지 않고 미분가능한 점으로 남아있게 됩니다.
좋아요는 글쓴이의 칼럼 제작에 큰 힘이 됩니다.
읽어주셔서 감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
아니 뭐지 진짜
-
지금 부교 정원이 313명이고 부산대 사범대학 정원이 96명인데 거의 초등교육과...
-
어떻게 고치나요
-
면접 싹다 수능뒤 + 성한서연고 골고루씀 (고대빼고 싹다면접) 69둘다 연공까진...
-
안녕하십니까!! 궁금한게있어 지나가시는 형님들께 조심히 물어봅니다 제가 지금...
-
기후경로, 채점 신유형이 갑자기 9모때 등장했는데
-
무슨메타지 2
-
생1 vs 화2 4
고2이고 생1,화2 디카프 같은 고난도 n전부 푼다는 가정인데 뭐가 고정...
-
만점자 20퍼 넘는다던데 ㅠㅠ
-
해설 강의 있는 메가 대성..중에 좋은거 파이널로 풀기 좋은거 있을까요?? 한석원...
-
보통 지금 실모만 푸시나요..? 어제부터 1일2실모 하고있는데 뭔가 공부하는 느낌이...
-
저 이제 7주 2일차
-
이모티콘에 왜 오뎅이가 없지? ㅇㅈㄹ함ㅋㅋㅋㅋㅋㅋㅋ
-
14 22 푸는데 엄청 오래 걸렸네요 ㅠㅠ 수능 땐 22번 점화식 아니길 바랍니다
-
사만다 N제나 실모에서 가끔 나오는 채점퍼즐문제들중 과도하게 어지러운 (갑,을의...
아 그래서 x^3 역함수가 미불이었구나