고3도 이해 가능한 복소수와 회전
게시글 주소: https://orbi.kr/00074946513

일단 우리가 물2를 배울때 가장 처음에 배우는 실전기술이 "축을 자유롭게 잡을수 있다" 인데, 이는 2차원 기준으로 어떤 축을 잡아도, 어떤 점에 대해서 상대적인 좌표는 다르게 표현되도, 그 절대적인 좌표는 같다는 사실이 잘 알려져 있음.
그리고 이미 실수가 수직선위에 나타낼수 있듯이, 복소수 a+bi는 숫자의 종류가 2개로 늘어났으니까 수직선대신 수지선 2개를 크로스해서 만드는 평면위에 나타내어야 함.
이렇게 복소수를 평면위에 나타내는것을 복소평면이라고 부르는데, 당연히 a+bi는 (a,b)로 나타남.

그렇다면 여기서 저 검은축을 적당하게 회전시키면 빨간축이 된다고 볼수 있음, 이때 검은축 기준으로 (1,1) 인 점을 회전시킨 점은 빨간축 기준으로는 (1,1)에 위치해 있지만, 검은축 기준으로는 어디에 위치해 있는가? 라는 질문이 생김.
이질문에 대한 답은 복소수의 곱셈이 해결해 줌.
저 검은축은 결국 1(앞)과 i(위) 라는 것을 "기준"으로 앞으로 1번, 위로 한번 이동한 점이라고 볼수 있는데,
마찬가지로 저 빨간점도 회전당한 무언가(앞), 회전당한 다른무언가(위)를 기준으로 앞으로 1번, 위로 한번
이동한 점이라고 생각할수 있음, 결국 "회전당한 무언가들"을 1과 i로 표현해야함, 하지만 이는 너무 간단하게
해결할수 있는데, 애초에 우리가 회전한 각만 알면 바로 기준이 되는 축이 어디인지를 알수있음,

이렇게 기준이 되는 1과 i를 단위원을 이용해 표현하면 직관적으로 알수있음.
여기서 조금만 생각을 해보면,



임을 알수있는데 결국 (a,b)를 각 θ 만큼 회전시키려면,

를 해주면 된다는걸 알수있음!(회전된 점의 좌표는 ((acos(θ)−bsin(θ)),(asin(θ)+bcos(θ)) 임.)
여기서 추가적으로 알수있는 사실은

이니까.

의 모든 근을 찾으라는 문제는 결국, "n번 회전해서 0도로 돌아오는 각은 얼마인가"로 볼수 있기에,

(이때 k= 0,1,2...n-1)
라고 일반화가 가능함.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
국어 푸는 순서 고민 0 0
가나지문을 먼저 풀지 아님 하던대로 마지막에 풀지 고민.. 뭐가 나을까요 항상...
-
수능국어 조언 4 0
국어 지문읽을때 이해는 잘 했는데 문제 풀고 채점해보면 더 틀려있는데 어떻게 해야하나요..??
-
국밥집 4 0
오늘은 닫았네...
-
작년 6모스러운 실모 추천좀 4 1
최근 평가원 기조 따아서 한두문제 빼고 다 쉽게 내는 실모들 요즘 계속 나오는거...
-
6월달부터 교대반수 이후 서성한에서 연고대 정도로 성적이 많이 올랐어요 근데 갑자기...
-
확실히 수도권보다 지방 쪽이 11 3
수험생 취준생 이고를 떠나서 ㅈㄴ 불리함.... 인프라도 그렇고 교육 수준도 수도권...
-
약리학 잘하는 법 6 3
구해요
-
책에다 바로...? ♡
-
이제 오르비 특정당하면 바로 6 1
탈릅하고 손절하고 인스타 삭제한 다음에 연락처 차단하고 카톡 탈퇴하고 전번바꾸고 성형해야겠다
-
후기들이 ㅎㄷㄷ하네요
-
정병훈추특후기 21 1
잡담이 ㅜ…ㅠㅠㅜㅜ(투머치) 교재가너무좋아여근데어려워여 사람너무많아여진짜 옯만추할뻔 ㅋㅋ
-
난수학은아닌거같다 2 0
도저히안된다
-
사문 사만다 사회 변동 문제 관련 인상 깊었던 선지 2 0
진화론 순환론 둘다 사회 변동이 일정한 방향성을 갖는다고 보았나—> x(진화론)...
-
쇼미 5,6가 좋았지 2 0
아직도 부르고 있음
-
새참 뭐 먹을까? 11 2
근데 배달이 되긴 하나
저거 고1때 썼었는데
복소평면
어둠의 스킬로 쓰이는 소재긴함 여기서는 회전이 왜 곱샘인지 생각해보는거가 포커스
여기서 실수배까지 하면 나선변환
많은 좌표계중에 복소평면에서 기하학을 할 때 압도적인 장점 , 회전이라는 연산이 그저 곱셈
캬
“물2를 배울때” 보고 바로 내렸습니다
국어강사.추천.당장.
가사는 사미인곡이죠
ㅅㅂ나만 머리에 든거 없지
고수) 아 수학에뻐진컴싸는 글을 못쓰는구나!
이제 봣는데 왜 뻐진임요
오타임뇨
님이 올린 것 중에 처음으로 이해함

기존의 형식으로부터 자유롭게 해주는 애들이 뭔가 좋음흠..생윤이나 해야지
어허
와! 드 무아브르!
wa!
저거 드무아브르 고1때 6모였나?
29번에 복소수 문제 복소평면 원 하나 그리고 답 냈었는데ㅋㅋㅋ
ㄹㅈㄷㄱㅁ
그때 100점이었음
애초에 고1 2때는 절반 이상이 100점이라..