역교점함수
게시글 주소: https://orbi.kr/00074882889
f(g(x))=h(x)꼴 항등식에서 g(x)를 교점함수, f(x)를 역교점함수(내가 임의로 지은 이름임)라 한다.
교점함수가 g(x)에 대한 방정식 f(g(x))=h(x)의 해를 유일하게 선택하여 정의한 것이라면
역교점함수는 t=g(x) 위에서 유일한 f(t)=h(x)를 갖도록 정의한 것이다.
즉 f(x)는 t에 대한 방정식 x=g(t)의 해를 h(t)에 집어넣은 것
이때 x의 변화에 따라 그려지는 t의 자취는 y=g(x)의 그래프를 y=x에 대해 대칭시킨 도형 G와 같다는 것에 주목하면
f(x)는 h(x)에 G를 합성시킨 것으로서(정확히 말하면 G를 일대일대응 그래프들의 합집합이 되도록 잘라 만든 함수들을 h(x)에 합성한 것으로서)
n축을 통해 시각적으로 이해할 수 있다.
예시)
물론 이경우는 f(x)가 함수가 될수 없다.
f(x)가 함수로 정의되기 위한 필요조건을 짚고 넘어가고자 일부러 잘못된 예시를 들었다.
예시에서 알 수 있듯 반드시 f(x)의 정의역에 속하는 x에 대해 t에 대한 방정식 x=g(t)를 만족하는 t의 값들을 h(t)에 집어넣었을 때 그 값들이 모두 같아야 한다.
이는 그래프에서 시각적으로 이해하는 하나의 방법이고
수식적으로 보이고자 한다면 g(x1)=g(x2)인 x1, x2에 대해 f(g(x1))=f(g(x2))=h(x1)=h(x2)임을 보이는 것으로 충분하다.
필요조건이 복잡하기에 웬만하면 g(x)가 일대일대응인 것이 좋다는 것을 알 수 있다.
만약 g(x)가 미분가능한 함수라면 여기서 g'(x)에 대한 부등식을 만들수 있고 미분계수가 0인 점이 반드시 존재하도록 조건을 주면 숨겨진 등식 하나를 만들 수도 있을 것이다.
혹은 g(a)=g(b)라는 등식을 주고 h(x)를 특수하게 줘서 g(x)를 [a, b]에서 상수함수로 만들 수도 있을 것.
마침 6평과 9평에 교점함수를 낸 김에 수능 28번은 역교점함수를 내서 241128처럼 상수함수를 숨겨놓는 가능세계가 있을 수도 있지 않을까 하는 망상을 한번 해봄.
역교점함수의 차수논리도 생각해볼 수 있을 것임
이경우 차수논리에 중독돼서 극한을 식으로 다루기 어려워하는 하수들을 벙찌게 만들 수 있을 듯
역교점함수까지 공부하고 가는 사람은 드물테니..
딴소리지만 솔직히 말하면 수능때는 그냥 7모 30번 비슷한 교점함수 정적분 유형 나올 것 같음. 아님말고
물론 위의 상수함수 예시도 있듯이 g(x)가 꼭 일대일이어야 할 필요는 없음
231122가 대표적인 예시인데 g(x)와 h(x)가 동시에 x=a에 대해 선대칭인 경우도 있음
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
인스타 ㅁㅌㅊ? 6
-
사람이 많지 그것도 지는 다 알고있고 상대는 오답이란 전제하에
-
꿈이 있음 7
시대인재를 인수해서 전부 유튜브 무료 스트리밍으로 바꾸고 급여는 후원으로 받는거임
-
한국사->영어->국어->점심->수학->탐구 ㄹㅇㅍㅌ ㅂㅂㅂㄱ
-
한의대 지망 통통이이고 8월 더프 96, 9월 더프 92입니다 킬캠이나 imt,...
-
ㅠㅠㅠ
-
으흐흐
-
와숙취좃된다 4
오늘휴강이라 어제술좀마셨더니만
-
검스 5
벅지
-
레어확인용 4
지워질 글
-
절이 싫으면 4
-
ㅅㄹ터짐ㅅㅂ 4
일본내일가는데ㅜㅅ부ㅜㅜㅜㅜㅜㅜㅜㅜㅜㅜㅜㅜㅜㅜㅜㅜㅜㅜㅜㅜㅜㅜㅜㅜㅜㅜㅜㅜㅜㅜㅜㅜ
-
나 이꽃 무서움 4
애니에서 맨날 누구 죽으면 그 자리에 피어남...
-
ㅁㅌㅊ?
-
당연한 말이겠지만... 사설 양치기하는 거 오히려 독인 거 같음. 차라리 아는...
-
빨래를 돌려잇 3
헬스장을 가잇
-
무슨 시장가였나? 거기 지나다가 갑자기 쌀국수가 마려워서 옆에 있는 쌀국수집...
-
이가 썩어요.. 3
아침부터 후와후와해졌어요..
-
모듀환호해~
겉함수 추론하는 거면 걍 합성함수로 다루면 되지 않나
원래 합성함수가 어떻게 이해할 것이냐가 핵심이라
불가능한걸 가능하게 해주는게 아니라 가능한걸 쉽게 다룰수있게 하는게 목적이죠