수학황들 도와주세요_함수의 증가 감소 관련 질문
게시글 주소: https://orbi.kr/00074438294
안녕하세요. 첫번째 수학 질문이네요ㅎㅎ 수학 질문 좀 드리려고 오르비 가입했는데 우선은 반갑습니다!!
첫글은 함수의 증가와 감소 관련해서 질문 드리고 싶어서 남깁니다. 질문은 2가지인데,
1. 함수의 증가와 감소에서 다음 함수가 '증가하도록'하는 x값의 범위는 f'(x)가 0보다 클때면 되는거 아닌가요?
f'(x)가 0일때도 포함하면 그림처럼, f'(x)가 0인 구간으로 쭉 이어지게 될 수도 있지 않을까? 라는 생각이 들었습니다.. 저런 함수는 존재할 수 있는지 없는지가 먼저 궁금하고요,
2-1 만약 위 함수가 고교 교육과정 안에서는 불가하다면
그러면 납득가능
2-2 위 함수가 가능한 함수라면
증가하도록 하는 x값은 f'(x)가 0일때를 포함하면 저 함수처럼 증가하지 않는 경우도 있으니 안되는것 아닌가요?
현역 고2에, 수학학원 다닐 여건이 안되어서 여태껏 인강으로 독학중입니다. 위 질문을 메가스터디 질문게시판에 남겼는데 "강의 참고하세요^^"라고 답변을 주셔서요;; 도움이 필요해요!! 답변 기다리겠습니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
외모가 뛰어났더라면 0 0
ㅝ
-
시냅스 삼각함수 0 0
왜이리 어렵냐... 몇문제가 아예 모르겠네 시냅스 다른 부분은 풀만한데 내가 삼각함수를 못하나보다
-
할짓도 없는데 영화나 보러갈까 1 2
귀칼 극장판 흥하네
-
새르비인원체크합니다. 19 5
댓글쓰세요.
-
김승리KBS 0 0
안녕하세요 지금까지 문학피지컬키운다고 연계는 잘안했습니다. 강의는 김승리꺼...
-
수학n제 추천 부탁드려요 0 1
항상 1컷 정도이고 미적분 선택러입니다28,30은 거의 고정으로 틀려요ㅜ 준킬러...
-
내 내신이 설연카 쓸만하다는거임?
-
히카 vs 빡모 0 0
아직 실모풀 수준은 아닌데 9모대비로 그냥 시험운용정도만 연습할 실모로 뭐가 적절함
-
그대여 0 0
나와 함께해주오 이봄이 가기전에
-
와 밖에 번개 엄청치네 7 2
창밖이 번쩍거려
-
찐따의 삶은 외로운것 0 0
ㅠㅠㅠ
-
지1 ㅂㅅ같이 2페 2점짜리랑 3페 문제 잘못 읽어서 45 나왔는데 1 아슬아슬한...
상수함수 제외해야해서요
아 질문이 자게 아닌가
일단 그린 그래프도 증가함수고
증가하면 -> f프라임 >=0
f프라임>0 이면 증가
상수함수 제외
그러면 구간이 나누어져있는 그래프로, 중간에 상수함수와 같은 형태로 나오는 그래프가 있다면 그 함수는 증가한다고 볼 수 있는건가요
예예 증가에요
그렇게 본다면 상수함수도 증가 아닌가요? 상수함수도 f'(x)=0인 구간이 지속되는데
이게 본인같이 헷갈리는 사름이 많은 주제에오
증가하면 f프라임 >=0
f프라임>0 이면 증가
이거 명제를 잘 생각해보셔요
왜 필요충분 조건이 아닐까요 의아하네요ㅋㅋㅋㅋ
상수함수를 제외시킨거에요 아래께
증가함수의 정의는
x1<x2일때, f(x1)<f(x2)이므로
f'(x)=0인 '점'이 존재하는 경우는 증가함수이지만
f'(x)=0인 '구간'이 존재하는 경우는 증가함수가 아닌 것으로 알고 있어요
감사합니다 깔끔하네요!!
따라서 상수함수 구간이 존재하면 증가함수가 아닐거에요.
일단 답변 감사함당 학교 쌤께 3트 갈게요
고등학교 교과내에서는 상수함수 구간이 존재하면 증가가 아닙니다. 근데 저 함수는 사실 원래는 단조증가라고 증가함수가 맞는데 수능범위에서는 아니에요
단조증가=감소하지 않는 함수 =/= 증가함수
f(x)가 미분가능할 경우,
"f(x)가 단조증가"와 "모든 실수 x에 대해 f'(x)>=0" 은 서로 필요충분조건(동치)
"f(x)는 증가함수" 인 것은 "모든 실수 x에 대해 f'(x) >=0" 일 충분조건(역은 미분계수 0인점이 한점씩 띄엄띄엄있는 경우가 있어 성립 안함)
"모든 실수 x에 대해 f'(x)>0" 인 것은 "f(x)가 증가함수" 일 충분조건 (역 성립 안함 윗 괄호 참고)
"f(x)가 증가함수" 와 "모든 실수 x에 대해 f'(x)>=0 이고, 미분계수가 0인 점은 존재한다면 띄엄띄엄 존재한다" 는 서로 필요충분조건(동치)