[칼럼] 수학 양치기의 역설!
게시글 주소: https://orbi.kr/00074436696
안녕하세요. 어수강 박사입니다.
내신/수능에서 수학 1등급 또는 만점을 받기 위한 최선의 방법은 무엇일까요?
[원문 출처] https://blog.naver.com/math-fish/223979984375
양치기란?
: 이 포스팅에서는 '무엇을', '어떻게', '왜' 하는지도 모른 채로 단지 많이 푸는 것을 '양치기'라고 정의하겠습니다.
1-1. 수학을 성실하게 공부하는 대부분의 학생들은 '양치기'를 합니다. 그저 묵묵히 문제집을 한 권, 두 권, 세 권, 그리고 많게는 7-8권 이상을 풀기도 합니다. 선행학습을 시작하는 시기가 점점 빨라지는 것도 그래야 더 많은 문제를 풀 수 있기 때문일 것입니다.
그런데 단지 많이 푸는 것이 정말로 도움이 될까요?
1-2. 공부를 하지 않던 학생이 문제집을 한두 권 푸는 것은 도움이 될 수도 있습니다. 하지만 내신/수능에서 안정적인 1등급 또는 만점을 목표로 공부하는 상위권 학생이 '무엇을', '어떻게', '왜' 하는지도 모른 채로 단지 많이 푸는 것(양치기!)은 그다지 도움이 되지 않을 것입니다.
그럼에도 불구하고 대부분의 학생들이 양치기를 하는 이유는 무엇일까요? 이것을 이해하려면 양치기의 기본 전제가 무엇인지 알아야 합니다.
1-3. 양치기는
한 번도 풀어보지 않은 문제는 시험에서 풀 수 없다.
는 불안함에서 시작됩니다.
'무엇을', '어떻게', '왜' 하는지 모른 채로 문제만 푼다면, 풀어보지 않은 문제는 풀지 못할 가능성이 높습니다. 그런데 내신/수능에서 1등급 혹은 만점이 목표인 학생이 풀어보지 않은 문제를 풀 수 없다면 어떨까요? 아마도 불안할 것입니다.
이 불안함을 해소하기 위해 시험에 나올 가능성이 있는 문제를 가능한 많이 푸는 것입니다. 유한한 시간 내에 가능한 많은 문제를 풀어야 하는데, 한 문제 한 문제 깊이 있게 고민해 보는 것이 가능할까요? 아마 어려울 것입니다. 때문에 '무엇을', '어떻게', '왜' 하는지 모른 채로 문제만 많이 풀게 되는 것입니다.
요약하면 다음과 같습니다.
(1) '무엇을', '어떻게', '왜' 하는지 모른 채로 문제만 푼다.
(2) 안 풀어본 문제는 풀 수 없기 때문에 불안하다.
(3) 유한한 시간 내에 가능한 많은 문제를 풀어야 하기 '무엇을', '어떻게', '왜' 하는지 신경 쓰지 못한 채로 문제만 푼다.
[양치기의 역설 1] '무엇을', '어떻게', '왜' 하는지 모른 채로 문제만 푼 것이 불안함의 원인임에도 불구하고 '무엇을', '어떻게', '왜' 하는지 모른 채로 계속해서 문제만 푼다.
2-1. 세상에 존재하는 모든 문제를 다 풀면 내신/수능에서 안정적인 1등급 또는 만점이 가능할까요?
: 풀어보지 않은 문제를 풀 수 없는 것이 문제라면, 세상에 존재하는 모든 문제를 풀면 되지 않을까요? 이 질문에 대한 답이 'Yes'가 되려면 다음의 두 가지 전제를 필요로 합니다.
[전제 1] 더 이상 새로운 문제는 없다.
[전제 2] 풀어본 문제는 모두 풀 수 있다.
하루가 멀다 하고 신유형, 사설 모의고사 및 새로운 문제집이 쏟아지는 세상에서 [전제 1]은 참이라 보기 어려울 것이고, [전제 2]는 학습 능력이 탁월한 극소수의 학생들만 가능할 것 같습니다. 대부분의 학생들은 2개월 전에 풀어본 문제도 "배운지 오래돼서 까먹었다!"라고 말하는 것이 현실입니다. 때문에 거의 대부분의 학생들의 경우, 양치기로 내신/수능에서 안정적인 1등급 또는 만점은 어려울 것입니다.
양치기를 하는 입장에서는 새로운 문제가 출제되지 않길 바랄 것입니다. 그런데 왜 자꾸 새로운 문제가 시험에 출제되는 걸까요? 이를 이해하려면 입시의 본질을 알아야 합니다.
2-2. 그렇다면 입시의 본질은 무엇일까요?
: 대학 입학을 목표로 공부하는 것이라면 대학 입장에서의 입시의 본질은
우수한 학생 선발하는 것
입니다. 전형을 다양화하는 것도, 전형을 해마다 수정&보완하는 것도 조금이라도 더 우수한 학생을 선발하기 위함일 것입니다. 평가원 입장에서도 수능 출제할 때, 이를 통해 우수한 학생과 아닌 학생이 변별되도록 하는 것이 유일한 목표일 것입니다.
2-3. 그렇다면 어떤 학생이 우수한 학생일까요?
대학 또는 평가원에서 '무엇을', '어떻게', '왜' 하는지도 모른 채로 문제만 많이 푼 학생을 우수하다고 생각할까요? 아마 아닐 것입니다. 풀어보지 않은 문제는 풀 수 없다고 하는 학생을 우수한 학생이라고 할 리가 없습니다.
배운 것에 근거해서 논리적, 체계적, 분석적 사고를 할 수 있는 학생, 이를 통해 합리적인 의사결정을 할 수 있는 학생들을 우수하다고 생각할 것입니다. 때문에 '무엇을', '어떻게', '왜' 하는지도 모른 채로 문제만 많이 푼 학생은 컨디션이 좋아도 풀기 어렵지만, 배운 것에 근거해서 논리적, 체계적, 분석적 사고를 할 수 있는 학생, 이를 통해 합리적인 의사결정을 할 수 있는 학생이라면 컨디션이 나쁜 날에도 풀 수 있을만한 문제를 출제할 것입니다.
이미 존재하고 있는 문제를 그대로 출제한다면 "무엇을", "어떻게", "왜" 하는지도 모른 채로 문제만 많이 푼 학생들이 합격할 가능성이 높아질 것입니다. 때문에 대학이나 평가원에서는
중요한 것을 생소한 형태로 출제!
하려고 할 것입니다. 이것이 (양치기로 아무리 많은 문제를 풀었다 하더라도) 시험에서 생소한 형태의 고난도 문제를 맞닥뜨릴 수밖에 없는 이유입니다.
[양치기의 역설 2] 아무리 많은 문제를 풀었다고 하더라도 시험에서는 생소한 형태의 고난도 문제를 맞닥뜨릴 수밖에 없기 때문에, 양치기를 통해 안정적인 1등급 혹은 만점을 받는 것은 불가능에 가깝다.
3-1. 그렇다면 어떻게 공부해야 할까요?
하나를 배우면 열을 안다.
내신/수능에서 안정적인 1등급 또는 만점이 목표라면, 하나를 배우면 열을 알도록 공부해야 합니다. 이를 위해선 쉬운 문제에서부터 '무엇을', '어떻게', '왜' 하는지 이해하기 위해 노력해야 합니다. 이러한 노력이 쌓이면 고등수학 전체를 관통하는 핵심 개념과 핵심 아이디어가 무엇인지 알 수 있게 됩니다.
고등수학 전체를 관통하는 핵심적인 개념 및 아이디어
에 초점을 맞추고 공부해야 합니다. 구체적인 예를 들어볼까요?
3-2. 공통수학(고1)에서 다루는 대상은 다항식뿐이라 해도 과언이 아닙니다. 다항식이란 무엇인가요?
다항식은 문자와 숫자의 유한 번의 합과 곱으로만 나타낼 수 있는 식이다.
이때, 문자가 1개인 1차식에 대한 문제가 고난도 문제일 수 있을까요? 당연히 아닐 것입니다.
그렇다면 공통수학에서 고난도 문제란 어떤 문제일까요? 문자 수가 많거나 차수고 높은 식을 포함한 문제일 것입니다. 따라서 공통수학에서 고난도 문제를 만나면
1. 문자 수가 많아서 어려운가?
2. 차수가 높아서 어려운가?
와 같이 질문하고, 배운 것 중에 문자 수를 줄이는 도구 또는 차수를 낮추는 도구에 초점을 맞추고 생각하면 됩니다. 이것이 공통수학 전체를 관통하는 핵심 개념이자 아이디어 중 하나입니다.
ex) 이차방정식은 차수를 낮추어 일차방정식으로 만든다. 삼사차방정식은 차수를 낮추어 일이차 방정식으로 만든다.
ex) 일차연립방정식은 문자 수를 줄여서 문자가 1개인 방정식으로 만든다. 이차연립방정식은 차수를 낮추어 일차연립방정식으로 만들거나, 문자 수를 줄여서 문자가 1개인 방정식으로 만든다.
예제를 살펴볼까요?
위 문제의 경우, 중상위권 이상이라면 곱셈공식의 변형을 이용해서 무난하게 해결합니다. 하지만 이와 같은 문제를
곱셈공식의 변형을 이용해서 푼다.
와 같이 유형화해서 암기하듯 공부해서 푼다면 아래의 예제(신성고 기출)는 시험이라는 긴장된 상황 속에서 제대로 풀지 못할 가능성이 높습니다.
그럼 어떻게 공부해야 할까요?
: 3차 이상은 고차이므로 차수를 낮추는 도구에 초점을 맞추고 생각해야 합니다. 구체적인 풀이는 다음과 같습니다.
이와 같이 쉬운 문제에서부터 핵심 개념 및 아이디어(문자 수를 줄이거나 차수를 낮추는 것 포함!)에 초점을 맞추고, 배운 것에 근거해서 여러 가지 방법으로 풀어본 학생이라면 다음 예제(신성고 기출) 또한 쉽게 해결할 가능성이 높습니다. 정말 그런지, 다음 예제를 함께 살펴볼까요?
3-3. 문자 수를 줄이거나 차수를 낮추는 것은 공통수학에 국한된 아이디어일까요?
: 대수(수학I)와 미적(수학II) 뿐 아니라 확통에도 문자를 포함한 식이 거의 대부분일 뿐 아니라, 문자가 여러 개인 식보다는 문자가 1개인 식이 쉬울 가능성이 매우 높습니다. 차수가 높은 식보다 차수가 낮은 식이 쉬울 가능성이 높은 것도 당연하겠죠?
뿐만 아니라, 이 아이디어를 조금 일반화하면 면 다음과 같습니다.
1. 밑이 서로 다른 지수(또는 로그)가 여러 개 있으면? 밑을 서로 같게 한다!
2. 지수와 로그가 섞여 있다면? 지수 또는 로그 중 하나로 통일한다!
3. sinx, sin(2x)와 같이 각의 크기가 서로 다른 삼각함수가 섞여 있다면? 각을 같게 한다!
4. sinx, cosx, tanx와 같이 서로 다른 종류의 삼각함수가 섞여 있다면? 하나로 통일한다!
따라서 밑을 같게 하는 도구, 지수를 로그로 바꾸는 도구, 로그를 지수로 바꾸는 도구, 삼각함수의 각을 같게 하는 도구, 삼각함수의 종류를 같게 하는 도구 등에 초점을 맞추고 공부해야 합니다.
쉬운 문제에서부터 '무엇을', '어떻게', '왜' 하는지 신경 써서 공부하면, 고등수학 전체를 관통하는 핵심 개념과 핵심 아이디어가 무엇인지 알 수 있게 됩니다. 여기에 초점을 맞추고 공부한다면, 하나를 배우면 열을 알게 될 것입니다. 그러면 풀어보지 않은 문제도 쉽게 풀 수 있겠죠?
대학이나 평가원의 목표는 우수한 학생을 선별, 선발하는 것입니다. 따라서 핵심적인 개념이나 아이디어를 생소한 형태로 출제할 가능성이 높습니다. 이때, 양치기로 공부한 학생들, 풀어보지 않은 문제는 풀 수 없는 학생들이라면 치열하게 공부했음에도 시험에서 점수가 들쭉날쭉하거나, 노력 대비 나쁜 결과를 얻게 될 가능성이 높습니다. 반면, 핵심 개념과 아이디어에 초점을 맞추고, 하나를 배우면 열을 알도록 공부한 학생들, 풀어보지 않은 문제도 차근차근 분석해서 늘 풀던 문제처럼 풀어낼 수 있는 학생들은 안정적인 1등급 또는 만점도 어렵지 않을 것입니다.
어떻게 공부하시겠습니까? 이것은 여러분의 선택 문제입니다.
2. 거의 모든 고난도 문항에 즉각 적용 가능한 치트키 2 : https://orbi.kr/00062194726
3. 문자의 개수 vs 식의 개수 (feat. 연세대) : https://orbi.kr/00064497772
4. Double Counting Method : https://orbi.kr/00068374111
PS. 적게 공부하는 것이 좋다는 이야기는 '절대' 아닙니다. '무엇을', '어떻게', '왜' 하는지 신경 쓰지 않고 단지 많이 푸는 것은 상위권 학생들에게 더 이상 도움이 되지 않을 가능성이 높다는 것입니다.
'무엇을', '어떻게', '왜' 하는지 이해하기 위해 노력하고, 이 과정에서 고등수학에서의 핵심 개념이나 아이디어를 발견하고, 이를 토대로 공부한다면~ 문제풀이도 다다익선입니다. 물론 이렇게 공부한다면 문제를 아주 많이 풀지 않아도 안정적인 1등급이 가능하겠지만요!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
아수라를 들을지 고민인 현역입니다 평소 국어는 3-4 나오고 최저로 3-4 맞으면...
-
Y=시그마Xn이 왜 10X바랑 같은 건지 설명해주실 고수분 계실까요 제발 궁금해요 ㅜㅜ
-
강기분 할까말까 0
안녕하세요 이제 강기본 끝내고 2회독 하고 있는 고2 입니다! 강기본 다음이...
-
저는 고등학생 때 보통 1주일에 1번씩은 스타벅스를 갔는데... 1
음료+케익 시켜놓고 노트북 들고가서 예능 같은 거 보다가 양심에 찔리면EBS 강의도...
-
수정 등급컷 0
수정 등급컷 나만 ㅈㄴ 낮은거 같다고 느끼는건가? 공통은 작수만큼 쉽고 미적도...
-
안녕하세요. 소테리아의 길 입니다. 최고의 독해력 독학서를 출간했습니다. 많은...
-
충경외시 8
충북대 경북대 부산외대 시대인제 ㄹㅊㄱ
-
탐구실모벅벅 1
본인 생윤,사문 허수조합인데 조만간 기출분석 어느정도 끝나고 9모 이후부터...
-
초등학교 5학년이 ‘정의’ 라는 말을 모름… 정사각형의 정의 이럴때 쓰는
-
어케하는거임? 반수 하는데도 매일 자살 마려운데... 난 이번에 ㅈㄴ 쳐박아도 다시 안할라고 ㅇㅇ
-
ㅇㅇ 내신도그렇고 내 공부량과 시간도 그렇고
-
중경외시는 4
중앙대 경북대 외대 시립대의 줄임말입니다 역시 에타GOAT 킹북대
-
공부좀해라 2
정신차려뭐하는거니?ㅗㅗㅗㅗㅗㅗㅗㅗㅗㅗㅗ
-
국어 풀이순서 6
현역이구요 원래 6모전까진 언문독 이 순서로 풀었는데요 제가 문학보다 독서가 좀 더...
-
feat. 감자까앙 무휴반이 ㄹㅇ 쉽지 않네
-
난 여드름 뾰루찌 하나도 없는데
-
현역 중경외시 3
진짜 절함
-
수리논술 0
로 학교 왔는데 수능 수학 과외 제안이 오면 받아도 될까요?? 스펙(현역, 재수...
-
본인 일찐임 3
일급찐따 ㅋㅋ
-
사학+컴공 전공이지만 경영학개론은 한번 들어볼 만 합니다. 0
졸업 앞두고 관심 있어서 한번 들어봤는데,기존에 가지고 있던 지식과 결합하면 강력한...
-
타고난 거 하나 없어서 13
쳐먹고라도 살려면 사람구실 하려면 공부에라도 목숨걸어야하는 게 슬프다 노력으로...
-
그럼 다시 6
이번엔 ㅇㄷ?
-
진짜 저 좀 살려주세요 정법을 7월 중순즘에 사작했는대 하다가 너무 어려워서 ㅈㄴ...
-
제가 8월초엔 앱스키마를 했었는데 앱스키마3 들어가니깐 정말 독서가 너…무 어려워서...
-
저 보기에서 1월 7월을 무슨 근거로 근일점 원일점이라고 볼 수 있는 건가요?...
-
재수해서라도 서성한 간다는 비율이 압도적으로 많네.. 마음이 좀 편해졌어
-
어제 먹었는데 너무 맛있어서 맨날먹고싶어짐 ㅡ.ㅡ
-
확통 공대 2
언매 확통 사문 지구 이렇게해도 생명공학과 포함한 공대 갈수 있나요 생명공학과...
-
천재 3
-
아씨 1
여드름 레전드터짐;;
-
바보 2
바다의 보물
-
내저능한머리로는따라갈수가업음
-
ㅇㄷ?
-
댓글 3
댇글 댇끌
-
뭐고 ㅋㅋ
-
과탐하는데 물리가 정말 답이 안여서 3등급에 안착할것같은데 그래도 끝까지는...
-
틀리는게 너므 많다 허수특
-
정성 추론을 뒤지게도 못해요 ㅅㅂ + 반비례 상황 지2 rho g h 할 때가 그립다 ㅅㅂ
-
요새 느끼는 본인 인생 11
지금이 딱 고점같음 행복해 죽을 것 같다 는 뉘앙스보다는 여기서 이 이상 더 돈을...
-
이제 n제 들어감 미적 작수 올 6평 중간2정도 나옴 국어는 작년~올해 평가원 다...
-
혹시 보내주실 수 있으십니까
-
요즘 조울증온듯.. 12
기분이 계속 오락가락해요 역시 빨리 탈출을 해야....
-
결핍이 마이너스고 끊는것도 마이너스니까 그럼 마이너스의 마이너스 해서 플러스인데...
-
6모 언어도 2틀하고 너무 언어안한거같아서 기출 다시돌리고 N제하는데 실모에서도...
-
지금까지 넓이를 구하라는 문제 말고는 피적분함수의 넓이를 함수적으로 보는 문제는...
-
총 몇지문 중에 문학 몇지문 독서 몇지문 나오나요?
-
대박났다길래..
-
강민철 김동욱 김상훈 전형태 이원준 엄선경 박석준 이미지 김범준 한석원 이창무...
-
팀07 1
한줌단ㅠㅠ
첫번째 댓글의 주인공이 되어보세요.