사회·문화) 교육청이 알려주는 미 출제 요소
게시글 주소: https://orbi.kr/00074418409
수능에서 다루어지는 어느 과목이 그렇듯, 사문 역시 많은 미 출제 요소들을 가지고 있습니다.
해당 미 출제 요소들이 새롭게 등장한 문항들을 우리는 '신유형'으로 부르기로 약속했고, 특정 시험지의 난이도는 이 '신유형'들이 얼마나 등장하는지에 따라 크게 좌우되죠.
그렇기에 이러한 미 출제 요소들에 대해 미리 대비를 해 두는 것은, 이후 해당 요소가 새롭게 등장한 문항을 해결하는 데 있어 매우 중요합니다.
그럼, 미 출제 요소들은 어디에서 미리 확인을 한 후 대비를 할 수 있는 것일까요?
이 질문에 대한 답은 매우 다양하게 있을 수 있지만, 그 답이 되는 컨텐츠 중 여러분에게 있어 가장 접근성이 좋은 것은 아마도 교육청 기출일 것입니다.
교육청 기출 중에서는 아직 평가원에서 다뤄지지 않은 미 출제 요소들을 다른 문항들이 많이 존재하고, 실제로 그 요소들은 이후 평가원 문제에서 종종 다뤄지기도 하죠.
'도입 발화/발문을 통한 사회 집단 제시'의 미 출제 요소를 다루었던 2023년 7월 모의고사 3번 문항
해당 요소가 그대로 등장한 2024학년도 9월 모의고사 7번 문항
위 사례에서 볼 수 있듯 교육청에서 먼저 등장한 미 출제 요소는 평가원에서 이후 등장할 수 있고, 그렇게 등장한 신유형은 상당한 파괴력을 가지게 됩니다.
당장 위에서 제시한 9월 모의고사 문항부터 69.6%의 오답률로 1컷이 44였던 해당 시험지 전체 2위의 오답률을 기록했죠.
그렇기에 이번 칼럼에서는, 2018년 이후 출제된 교육청 문항들에서 다루어진 미 출제 요소들에 대해 점검을 해 보고자 합니다.
선정 기준은 '평가원 시험에 등장하지 않았고, 등장했을 때 충분한 파괴력을 가질 수 있는가?'이고, 0점부터 5점까지의 중요도는 출제되었을 때 예상되는 난이도와 출제 가능성을 복합적으로 고려해 매겼습니다.
이 칼럼을 통해, 이후 충분히 출제될 수 있는 미 출제 요소들에 대한 내성을 기를 수 있기를 바라겠습니다!
1. 2018년 고3 3월 모의고사 20번
중요도: 2.5/5
해당 문제에서 등장한 미 출제 요소는, 바로 '세대 간 계층 격차 지수'입니다.
상층, 중층, 하층을 기준으로 개인이 몇 개의 계층을 이동했는지에 관해 나타낸 해당 요소는, 아직 평가원 시험에서는 등장한 적이 없죠.
그리고 실제로 해당 미 출제 요소의 모체가 되는 '계층 이동'유형은 난이도가 높은 유형이기에, 이 요소는 실제로 출제되었을 때 충분히 파괴력을 가질 수 있는 요소에 해당합니다.
그러나 현재 평가원 기조 상 '계층 이동'유형은 난이도가 높게 출제되지 않기에(작년 수능에서 등장한 딱 그 정도가 상한선이라고 보여집니다) 이 요소에 대해서 여러분들은 위에서 제시한 문제 정도만 살펴보고 가도 되실 것이라고 생각합니다.
2. 2018년 고3 10월 모의고사 2번
중요도: 1.9/5
해당 문제에서 등장한 미 출제 요소는, 바로 '개수 세기형 도표'입니다.
위 문제는 절대적 빈곤과 상대적 빈곤의 개념을 바탕으로, 주어진 가구들 중 절대적 빈곤, 상대적 빈곤 가구의 개수를 직접 세도록 출제되었죠.
물론 현재 해당 개념은 도표의 형태로 출제가 되지 않고 있기는 하지만, '개수 세기'의 형태 자체는 사회 보장 제도 도표에 출제될 가능성이 없지는 않다고 판단해 미 출제 요소로 제시를 하게 되었습니다.
그러나 해당 형태의 도표가 출제된다면 '킬러'논란을 피할 수 없을 것으로 보이기에(일단 문제의 덩치가 어쩔 수 없이 커질 것이라,,) 그렇게 높은 중요도를 부여하진 않았습니다.
3. 2019년 고3 3월 모의고사 19번
중요도: 3.2/5
해당 문제에서 등장한 미 출제 요소는, 바로 '답변 예/아니요의 개수'입니다.
현재까지 평가원 기출에서 등장한 채점형 문항은 모두 '옳은 응답의 개수'의 형태를 가지고 있었기에, 위의 문항처럼 '응답 예/아니요의 개수'가 채점형 문항으로 등장한다면 충분히 학생들을 당황케 할 수 있으리라 생각됩니다.
물론 위 문항의 경우는 A의 답변을 통해 모든 것이 확정이 되어버려서 난이도가 매우 낮은 편이었습니다.
그러나 위 미 출제 요소를 활용하여 확정이 되지 않게끔, 다시 말해 케이스 분류 등의 사고를 통해 문항의 복잡도를 끌어올린다면 충분히 변별력 있는 형태의 문항이 만들어질 수 있다는 사실을 염두에 두시기 바랍니다.
4. 2019년 고3 10월 모의고사 5번
중요도: 5/5
해당 문제에서 등장한 미 출제 요소는, 바로 '두 가지 변수의 존재 상황서 가설의 수용 여부'입니다.
사실 이 문제서 ㄱ, ㄴ, ㄷ 선지는 없는 것이나 마찬가지입니다: 이 세 가지 선지는 매우 쉽게 판단을 할 수 있는 부분이죠.
ㄱ에서 물어보는 양적/질적 연구 여부, ㄴ에서 물어보는 표본에 대한 판단, ㄷ에서 물어보는 조작적 정의 모두 이 글을 참고할 정도로 사문에 관심이 있는 분들이시라면 바로 판별이 가능한 부분일 것입니다.
그러나 문제는 ㄹ 선지에 있습니다: ㄹ 선지의 정/오 여부에 따라 2번 선지 또는 4번 선지를 선택하게 되는데, 정답인 2번 선지의 선택률은 고작 15.8%인데 반해 ㄹ을 잘못 판별했을 경우의 오답 선지인 4번 선지의 선택률은 무려 64.4%에 달하죠.
해당 ㄹ 선지는 <가설 1>, <가설 2>의 성립 여부에 관해 물어보고 있는데, 결론부터 이야기하자면 <가설 2>는 수용되나 <가설 1>은 수용될 수 없기에 해당 선지는 옳지 않습니다.
우선 <가설 2>가 수용되는 이유에 대해서는 쉽게 판단이 가능하실 겁니다: 다문화 수용성 점수는 다문화 교육 이수 경험이 있는 집단 중 국외 거주 경험이 있는 집단에서 70점, 없는 집단에서 60점인데 반해 다문화 교육 이수 경험이 없는 집단 중 국외 거주 경험이 있는 집단에서 50점, 없는 집단에서 40점이죠.
어떤 경우를 들고 오더라도, 다문화 수용성 점수는 다문화 교육 이수 경험이 있는 집단이 없는 집단보다 높습니다.
이제 <가설 1>에 대해서 살펴보죠: 다문화 수용성 점수는 국외 거주 경험이 있는 집단 중 다문화 교육 이수 경험이 있는 집단에서 70점, 없는 집단에서 50점, 국외 거주 경험이 없는 집단 중 다문화 교육 이수 경험이 있는 집단에서 60점, 없는 집단에서 40점입니다.
<가설 2>의 경우와는 다르게, <가설 1>의 경우에서는 국외 거주 경험이 있는 집단보다 없는 집단이 다문화 수용성 점수가 더 높은 경우가 가능합니다: 국외 거주 경험이 없더라도 다문화 교육을 이수했으면 국외 거주 경험이 있더라도 다문화 교육을 이수하지 않은 집단보다 다문화 수용성 점수가 더 높은 경우가 이에 해당합니다.
그렇기에 국외 거주 경험이 있는 국민이 그렇지 않은 국민에 비해 반드시 다문화 수용성 점수가 높다고 단정할 수가 없는 것이죠.
이러한 문제 세팅은 변수가 '다문화 교육 이수 여부'와 '국외 거주 경험 여부'의 2가지가 있기에 가능한 것이었습니다.
그리고 아직 평가원에서는 이러한 세팅을 출제한 적이 없죠.
그러나 현재 평가원 시험에서는 연구 문항에 높은 난이도를 할당하는 경향이 나타나고 있고, 또 84.2%의 오답률에서 보이듯 이 요소는 출제된다면 매우 큰 파괴력을 가질 수 있기에, 이 문제를 통해서 미리 온전하게 학습을 하고 가시는 것을 강력하게 추천드립니다!
5. 2020년 고3 4월 모의고사 15번
중요도: 4.8/5
해당 문제에서 등장한 미 출제 요소는, 바로 '가중 평균의 성립 여부'입니다.
이 글을 읽고 있는 여러분들이라면, '가중 평균'이라는 출제 요소를 활용한 도표 문항을 풀어 본 적이 있으리라 생각이 듭니다.
당장 가장 최근에 시행된 2025학년도 6월 모의고사 15번에서부터 가중 평균을 활용한 문항이 출제가 되었을 만큼 해당 출제 요소는 사문 도표 문항에 있어 가장 빈번하게 활용되는 요소로 남아 있습니다.
그러나 이 '가중 평균'이 성립하기 위해서는 다음의 조건이 필요합니다: '전체 집단이 가지는 비율의 분모 값은 해당 집단을 구성하는 각 집단이 가지는 비율의 분모 값을 합친 것과 같다.'
이 말만 들으시면 이게 어떤 이야기인지 전혀 감이 오지 않으실 것을 알기에, 2025학년도 6월 모의고사 15번 문항을 통해 이게 무슨 이야기인지 한 번 살펴 보도록 합시다.
(나) 수급자 비율에서, A 지역과 B 지역, 갑국 전체 모두에서 해당 비율의 분모 값은 '해당 지역 인구'입니다.
그리고 A 지역의 인구, 다시 말해 'A 지역이라는 집단이 가지는 비율의 분모 값'과 B 지역의 인구, 다시 말해 'B 지역이라는 집단이 가지는 비율의 분모 값'을 합친 것은 갑국 전체의 인구, 다시 말해 '갑국 전체라는 집단이 가지는 비율의 분모 값'이 됩니다.
그렇기에 우리는 (나) 수급자 비율을 통해 A 지역 인구는 B 지역 인구의 2배라는 사실을 도출해 낼 수 있는 것이죠.
이제 해당 미 출제 요소가 나타난 문항을 봅시다: 2016년을 예시로 봤을 때 '남성 가구주 가구'라는 집단이 가지는 비율, 다시 말해 '남성 가구주 가구의 소득 5분위 배율'의 분모는 '남성 가구주 가구의 1분위 평균 소득'입니다.
그리고 '여성 가구주 가구'라는 집단이 가지는 비율, 다시 말해 '여성 가구주 가구의 소득 5분위 배율'의 분모는 '여성 가구주 가구의 1분위 평균 소득'입니다.
그리고 '전체 가구'라는 집단이 가지는 비율, 다시 말해 '전체 가구의 소득 5분위 배율'의 분모는 '전체 가구의 1분위 평균 소득'입니다.
그리고 이 경우 가중 평균이 성립을 하려면, '남성 가구주 가구의 1분위 평균 소득'과 '여성 가구주 가구의 1분위 평균 소득'을 합친 것이 '전체 가구의 1분위 평균 소득'이 되어야 합니다.
그러나 남성 가구주 가구와 여성 가구주 가구에서 소득 분위를 따로 산정하기에, 남성 가구주 가구와 여성 가구주 가구의 1분위 평균 소득을 합친 것이 전체 가구의 1분위 평균 소득이 될 수 없기에 해당 사례에서는 가중 평균을 활용할 수 없습니다.
그리고 만약 가중 평균을 활용할 수 있었다 가정을 하더라도, 해당 비율들의 분모는 '1분위 평균 소득'이지 '가구 수'가 아니므로 가중 평균을 통해 가구 수를 구할 수 없었을 것입니다.
그렇기에 가구 수에 대해 물어보고 있는 1번 선지는 아예 판별이 불가능한 것이죠.
현재까지 평가원에서 가중 평균의 성립 가능성에 대해 물어본 경우는 없었으므로, 해당 문제를 통해 어떤 경우 가중 평균이 성립이 될 수 있는지 온전히 습득을 하고 가시기를 바랍니다!
6. 2020년 고3 7월 모의고사 10번
중요도: 2.4/5.0
해당 문제에서 등장한 미 출제 요소는, 바로 '특정 비율에서 분자가 다른 비율에서 분모가 되는 경우'입니다.
실제로 위 문제에서 '난민 신청 비율'의 분자인 '갑(을)국에 난민 인정을 신청한 사람 수'는 '난민 인정 비율'에서 분모로 쓰이고 있죠.
위의 미 출제 요소가 주목할 만한 지점은 다른 게 아니라, 해당 요소에 '가중 평균'이 결합해서 출제되었을 경우입니다.
바로 위 문제에서도 알아보았듯, 가중 평균은 분수의 분모가 가지는 크기에 대해 알아보기 위한 방법이기에 특정 비율에서 분자가 다른 비율의 분모로 들어가는 경우, 가중 평균을 통해 무엇을 알 수 있는지 판별하는 것이 매우 중요합니다.
만약 위 문제 조건에 '갑/을국 전체의 난민 인정 비율이 15%'가 추가로 붙어 있다면, 여러분들은 가중 평균을 활용해 갑국에 난민 인정을 신청한 사람 수와 을국에 난민 인정을 신청한 사람 수는 같다는 사실을 알아낼 수가 있는 것이죠.
그러나 개인적인 의견으로는,,위 미 출제 요소에 가중 평균이 결합한다면 킬러 논란이 무조건 발생할 수 밖에 없기에, 출제될 가능성이 그렇게 엄청 높다고는 이야기할 수 없을 것 같습니다.
그래도 만약이라는 게 있고, 또 해당 사항에 대한 이해는 가중 평균이라는 개념 자체에 대한 이해에도 도움이 되므로,,알아가 두시면 나쁠 건 없을 것 같습니다.
7. 2020년 고3 7월 모의고사 18번
중요도: 3.4/5
해당 문제에서 등장한 미 출제 요소는, 바로 '기준에 따른 비교 결과'입니다.
여태껏 평가원에서는 수많은 퍼즐 형태의 개념 문항을 출제했으나, 위 유형의 퍼즐 문항은 한 번도 출제된 적이 없고, 그만큼 출제가 된다면 많은 학생들을 힘들게 할 유형이기에 미리 한 번 봐 두는 것이 좋다는 생각입니다.
위 문항을 해결하기 위해 특별히 알아야 할 지식은 존재하지 않습니다: 그저 미리 해당 문제를 한 번 풀어 보는 것 만으로도, 충분한 대비가 될 것이라 생각합니다.
한 번 위 문항을 풀어 본 뒤, 다음 문항의 설명으로 넘어가 보는 것을 추천드립니다.
8. 2020년 고3 10월 모의고사 7번
중요도: 5.0/5.0
해당 문제에서 등장한 미 출제 요소는, 바로 '개념의 포함 관계에 따른 구분'입니다.
왜 '포함 관계'라는 워딩을 썼는지는, 위 문제를 한 번 풀어보면 바로 알게 될 것이라는 생각이 듭니다.
반문화는 하위문화에 포함이 되는 개념이고, 이를 이용하면 ㅁㅁ문화는 A, C에 동시에 해당하나 **(별별)문화는 C에만 해당한다는 사실을 이용해 A가 반문화, C가 하위문화라는 사실을 도출해낼 수 있습니다.
A~C에서 제시된 반문화, 하위문화, 주류 문화에는 개념적 포함 관계가 존재하고, 바로 이 포함 관계 덕분에 위와 같은 문항이 출제가 될 수 있었던 것입니다.
해당 포함 관계를 떠올리지 못하면, 위 유형의 문항도 해결을 할 수가 없게 되죠.
위 유형의 문항은 아직 출제되지 않았으나, 서울특별시교육청은 위 유형을 이후에도 매우 꾸준히 미는 모습을 보여줬습니다.
2021년 고3 10월 모의고사 17번
2023년 고3 3월 모의고사 17번
비록 서울특별시교육청이 출제한 문항들에서 위 유형은 문화의 종류에만 활용이 되었으나, 위 유형은 어디까지나 '개념의 포함 관계' 덕분에 성립이 될 수 있었던 것이기에 개념의 포함 관계가 존재하는 단원이면 언제든지 연계가 되어 출제될 수 있습니다.
예를 들면, '사회 집단과 사회 조직' 단원에서 위와 같은 유형을 활용하여 출제가 될 수 있겠죠.
이와 같이 해당 유형은 그 난이도보다도 활용 가능성을 매우 크게 가지고 있고, 그에 따라 중요도 역시 매우 높다고 판단이 되기에 여러분들은 첨부한 문제를 통해 위 유형을 반드시 마스터하고 가시기를 추천드립니다!
9. 2021년 고3 7월 모의고사 14번
중요도: 2.2/5
해당 문항에서 등장한 미 출제 요소는, 바로 '해당하는 개념의 답변'입니다.
현재까지 평가원 시험에서 출제된 채점형 문항은, 옳은 진술의 답변 또는 '예', '아니요'의 답변의 형태로 이루어져 있었습니다.
전자의 형태는 2020학년도 수능에서 고난도 문항으로 등장한 바 있으며, 후자의 형태는 2021학년도 9평, 2021학년도 수능 등 수많은 시험들에서 이미 고난도 문항으로 등장했죠.
그러나 최근 평가원 시험에서, 위에서 보여지는 '해당하는 개념의 답변'의 형태는 아직 유의미한 고난도 문항으로 등장한 적이 없습니다.
비록 위 문항은 난이도가 매우 쉬운 형태였으나, 위 문항에서 나타난 형태는 언제든지 다시 고난도 문항이 되어서 나타날 수 있는 가능성을 가지고 있습니다.
그러나 위 형태나 현재까지 평가원에서 등장한 채점형 문항의 형태나 따라가야 하는 근본적인 사고 과정은 동일하므로, 기존의 채점형 문항을 해결하던 것과 같이 케이스 분류를 활용한다면 무리 없이 해결할 수 있을 것입니다.
각 진술에 해당하는 개념이 어떤 개념인지를 파악한 뒤, 각 학생이 답한 개념이 해당하는 개념인지 아닌지를 파악하는 방향으로 문제를 풀어 나가면 쉽게 해결을 할 수 있다는 이야기이죠.
10. 2021년 고3 10월 모의고사 11번
중요도: 1.8/5
해당 문항에서 등장한 미 출제 요소는, 바로 '질문별 옳은 응답의 수'입니다.
기존 평가원 문항에서 등장했던 채점형 문항의 형태는 모두 '각 학생별 옳은 응답 수'이었습니다.
위와 같이 질문별로 옳은 응답의 수를 제시한 형태의 문항은 단 한 번도 등장하지 않았고, 해당 형태도 평가원에 등장한다면 그 낯설음으로 인해 충분히 학생들에게 혼란을 줄 수 있을 것입니다.
그러나 이 요소는 익숙해지고 나면, 오히려 학생별 옳은 응답 수에 비해 더 쉬운 유형으로서 다가올 수 있습니다: 케이스를 구분해야 하는 기준이 매우 명확하기 때문이죠.
각 질문별로 옳은지 옳지 않은지에 대해 케이스 구분을 하고 나면, 위 요소를 활용한 문항은 어느새 쉽게 해결이 되어 있을 것입니다.
위 문제의 경우에는 케이스 구분을 할 필요도 없이, 세 번째 질문에서 '예'가 한 개인데 옳은 응답이 한 개인 점을 이용하면 바로 C가 무엇인지를 확정을 할 수 있죠.
이렇게 확정할 수 있는 것에 대해서는 확정을 한 뒤, 나머지 것들에 대해 케이스 분류를 해 나가면서 구해야 하는 것들을 모두 구하면 되는 것입니다.
이것이 제가 해당 요소의 중요도에 1.8점밖에 주지 않은 이유이기도 하죠.
11. 2022년 고3 4월 모의고사 2번
중요도: 2.8/5
해당 문항에서 등장한 미 출제 요소는, 바로 '예, 아니요의 개수에 따른 개념의 구분'입니다.
위 문제에서 '강제 가입의 원칙이 적용되는가?'라는 질문에 '예'라고 답할 수 있는 제도는 사회 보험, 공공 부조, 사회 서비스 중 사회 보험의 한 제도이고, 이에 따라 바로 C를 사회 보험, ㄴ을 '예'로 확정지을 수 있습니다.
'예'와 '아니요'조차 ㄱ, ㄴ으로 주어진 채 확정되지 않아 처음 마주했을 땐 당황할 수 있지만, 찬찬히 생각해보면 금방 해결할 수 있는 문제의 요소입니다.
주어진 개념의 개수가 짝수이고, 그 개념 중 '예'로 대답할 수 있는 개념의 개수와 '아니요'로 대답할 수 있는 개념의 갯가 같지 않은 이상 언제나 확정을 지을 수 있는 부분은 존재합니다.
예를 들면, '직접 전파, 간접 전파, 자극 전파, 발명, 발견'의 예시에서 '문화 변동의 내재적 요인인가?'의 질문이 주어진다면 '예'로 답변할 수 있는 것은 '발명, 발견'의 2개이므로 이를 활용해 확정 지을 수 있는 것이죠.
해당 요소가 등장한다면, 먼저 주어진 질문에 '예' 또는 '아니요'로 답변할 수 있는 개념이 몇 가지인지를 생각하신 뒤 이후 문제 풀이를 이어나가면 되겠습니다.
12. 2022년 고3 10월 모의고사 20번
중요도: 4.2/5
해당 문항에서 등장한 미 출제 요소는, 바로 '수급자 비율에 따른 인구의 결정'입니다.
기출 공부를 한 학생들이라면 위 문제가 어느 문제의 변형인지를 바로 알아차릴 수 있을 것입니다: 2022학년도 수능 15번이 바로 그것이죠.
두 문제 모두 두 제도 각자와 두 제도의 중복 수급자 비율이 제시되고 또 세 지역과 전체 지역의 수급자 비율이 제시되어, 가중 평균을 이용해 각 지역의 인구를 구해야 하는 형태로 출제되었습니다.
그러나 두 문제 사이에는 하나의 차이점이 있습니다: 22학년도 수능 15번은 두 지역 간의 인구 관계를 직접적으로 제시한 반면, 위 문제는 '중복 수급자의 수'를 활용해 간접적으로 제시했다는 점이죠.
전자의 경우 우리는 인구를 바로 확정지을 수 있지만, 후자의 경우에는 일단 두 지역의 인구를 미지수로 둔 다음, 해당 인구를 중복 수급자 비율에 대입해 미지수 간 관계를 확정짓는 한 단계를 더 거쳐야 하죠.
A 지역의 전체 인구를 100a, B 지역의 전체 인구를 100b로 두었을 때 중복 수급자의 수는 A 지역이 5a, B 지역이 10b인데 후자는 전자의 3배이므로 15a=10b, 1.5a=b이므로 B 지역 전체 인구는 A 지역 전체 인구의 1.5배라는 사실을 알 수 있는 것이죠.
그리고 이 '한 단계 더'의 존재성은, 해당 문제가 가지는 체감 난이도를 훨씬 끌어올리는 요소로 작용합니다.
위 문제의 사례에서는 비율이 명시적으로 제시된 '중복 수급자'의 수를 가지고 인구 관계를 제시했기에 그나마 난이도가 그렇게 높지는 않았었지만, 만약 '특정 제도의 단독 수급자'의 수를 가지고 인구 관계를 제시했으면 난이도는 더 올라갈 수 있었겠죠.
그리고 해당 요소는 실제로 이후 시험에 등장할 가능성이 상당히 높은 요소이기에, 위 문제를 비롯한 다양한 기출과 사설 문제들을 이용해 연마를 해 두시는 것을 추천드립니다.
13. 2023년 고3 7월 모의고사 7번
중요도: 2.7/5
해당 문항에서 등장한 미 출제 요소는, 바로 '특정 관점에서의 일관된 답변'입니다.
이 역시도 1, 2번 미출제 요소와 유사하게 채점형 문항에서 활용이 될 수 있는 형태로, 아직 평가원에서는 해당 요소를 활용해서 출제를 한 적이 없죠.
하지만 이 요소를 활용한 유형의 문항 역시도 풀이 방법을 알면 크게 어렵지 않게 해결할 수 있습니다: 주어진 질문에 '예'와 '아니요'로 대답할 관점을 각각 표시를 해 둔 뒤, 특정 관점이 내어놓을 '예' 또는 '아니요'의 대답을 그대로 내어놓는 학생이 누구인지를 파악하면 됩니다.
위 문제에서는
1번 질문은 예: 기능론 아니요: 갈등론, 상징적 상호 작용론
2번 질문은 예: 갈등론 아니요: 기능론, 상징적 상호 작용론
3번 질문은 예: 기능론, 갈등론 아니요: 상징적 상호 작용론
이렇게 표시를 해 두면 갑, 병이 각각 기능론, 상징적 상호 작용론의 입장에서 일관된 답변을 하고 있음을 바로 파악할 수 있습니다.
14. 2023년 고3 10월 모의고사 19번
중요도: 4.2/5
해당 문항에서 등장한 미 출제 요소는, 바로 '특정 제도의 수급자 중 다른 제도의 수급자 비율'입니다.
위 문제에서는, 아예 처음부터 특정 제도의 수급자 비율이 20%라는 정보를 준 채로 시작을 했기에 문제 해결에 큰 어려움이 없을 수 있었습니다.
그러나 이 요소는, 얼마든지 더 어려운 난이도로 변형되어 출제될 수 있는 무궁무진한 가능성을 가지고 있습니다.
예를 들면, 'A와 수급자 중 B의 수급자 비율', 'B의 수급자 중 A의 수급자 비율'의 정보에 더해 '전체 인구 중 A 또는 B의 수급자 비율'의 정보를 주는 경우가 있을 수 있습니다.
이 경우는 A의 수급자 또는 B의 수급자 비율을 미지수로 둔 뒤 A와 B의 중복 수급자 비율을 미지수로 표현하고, 마지막으로 앞에서 구하지 않은 제도의 수급자 비율을 미지수로 표현함으로써 문제를 해결할 수 있습니다.
또 다른 방향으로는, 'A와 수급자 중 B의 수급자 비율', 'B의 수급자 중 A의 수급자 비율'에 아예 가중평균을 먹여버리는 경우도 있을 수 있겠죠.
이는 제가 예에전에 배포한 Hesco Free 모의고사 1회에서 사용한 아이디어이기도 합니다.
이 경우 가중평균을 사용해서 구할 수 있는 인구 비는 각 지역의 전체 인구 비가 아니라, 분모가 되는 제도의 수급자 수의 비임을 유의하셔야 합니다.
이렇게 위 요소에는 얼마든지 심화된 형태로 활용되어 출제될 가능성이 무궁무진하게 존재하므로, 위 문제를 통해 가장 기본적인 형태를 익혀 둔 뒤 사설 문항들을 통해 심화된 형태를 연습해 두면 될 것입니다.
-> 2025년 고3 5월 모의고사 15번에 출제되어, 아래에 해당 언급을 추가하였습니다.
15. 2024년 고3 4월 모의고사 15번
중요도: 4.7/5
해당 문제에서 등장한 미 출제 요소는, 바로 '두 가지 범주에 따른 집단의 구분'입니다.
이는 지난 편에서 살펴본 2019년 고3 10월 모의고사 5번 문제와 유사하면서도 또 다른 형태이죠.
위 문제에 있어, 갑국의 근로자들은 두 가지 범주에 따라 구분됩니다: '근로 형태'와 '성별'이 바로 그것이죠.
이 경우 여러분들을 가장 당황하게 하는 요소는, 위 정보를 어떻게 정리해야 할지에 대한 내용일 것입니다.
지금까지 한 가지 범주, 다시 말해 성별이나 지역, 근로 형태에 따라서 집단을 정리해 본 적은 많을 것이나 그들 중 두 가지를 모두 적용해 정리해 본 적은 없을 것이니 말이죠.
이에 대해 제가 제시하는 답은 다음과 같습니다: 과거 출제된 형태의 계층 도표를 해결할 때 5x5 표를 그렸듯, 4x4 형태의 표를 그리면 됩니다.
구분 | 정규직 | 비정규직 | 전체 |
남성 | |||
여성 | |||
전체 |
위와 같은 형태의 표에 정리를 하면 되는 것이죠.
우선 정규직의 근로자 성비가 400, 비정규직의 근로자 성비가 100이니 정규직 남성, 여성 수를 각각 400a, 100a로 두고 비정규직 남성, 여성 수를 각각 150b, 100b로 둘 수 있습니다.
이러면 다음과 같이 표를 채울 수 있겠죠.
구분 | 정규직 | 비정규직 | 전체 |
남성 | 400a | 150b | 400a+150b |
여성 | 100a | 100b | 100a+100b |
전체 | 500a | 250b | 500a+250b |
이제 성별 비정규직 비율을 활용해 a와 b 사이의 관계를 구하면 문제에서 물어보는 모든 내용은 마무리가 되는 것입니다.
남성 성별 비정규직 비율이 60%이므로 150b/(400a+150b)=6/10, b=4a임을 구할 수 있고, 이에 따라 아래와 같이 모든 정보를 정리할 수 있는 것입니다
구분 | 정규직 | 비정규직 | 전체 |
남성 | 400a | 600a | 1000a |
여성 | 100a | 400a | 500a |
전체 | 500a | 1000a | 1500a |
위 문항은 두 범주에 따른 집단의 수를 구하는 것 그 자체를 요구했기에 난이도가 낮은 편이었으나, 만약 두 범주에 따른 집단의 수를 가중평균에 접목한다면 매우 높은 난이도의 문항이 탄생할 수 있습니다.
해당 아이디어를 적용한 문항이 위에서 보이듯 작년 수능완성에 수록되었으니, 한 번 풀어보면서 가중평균의 경우 어떻게 적용되는지를 한 번 알아보시기 바랍니다.
16. 2024년 고3 7월 모의고사 2번
중요도: 5/5
해당 문제에서 등장한 미 출제 요소는, 바로 '조작적 정의의 판단'과 '사전/사후 검사의 판단'입니다.
전자는 2번 선지, 후자는 3번 선지와 연관이 되어 있는 요소이죠.
먼저 '조작적 정의의 판단'에 대해 알아봅시다: '조작적 정의'란, 가설에서 사용한 추상적인 개념을 측정 가능하도록 '정의'하는 것입니다.
이 말은, 측정 가능하도록 '정의'를 하는 그 순간을 바로 조작적 정의로 볼 수 있다는 이야기입니다.
'학업 성취도'의 예시를 들면, '학업 성취도는 직전 시행된 모의고사의 성적을 바탕으로 측정하자!'의 판단을 내리는 바오 그 순간이 조작적 정의라고 할 수 있는 것입니다.
그럼 위 문항의 사례에서 조작적 정의는 무엇일까요?
결론부터 이야기하자면, '위 사례에서는 드러나지 않았다'가 정답입니다.
물론 연구를 진행하기는 했기에 조작적 정의가 이루어지기는 했을 것이나, '집단의 영향력은 길이가 다른 선을 고르는 정도로 측정하자!'의 판단을 내리는 순간이 지문에 등장하지 않았으므로 조작적 정의는 드러나지 않았다고 볼 수 있는 것입니다.
이제 '사전/사후 검사의 판단'으로 넘어가 봅시다: '사전 검사'는 종속 변인을 실험 처치를 하기 전 측정하는 것이고, '사후 검사'는 실험 처치를 한 후 측정하는 것입니다.
그리고 위 연구에서 종속 변인은 '개인의 행동'이고, 실험 처치는 '나머지 번호 참가자들이 모두 길이가 다른 선을 고르게끔 하는 것'입니다.
그렇기에 실험 처치가 이루어지기 전, 표준선과 같은 길이를 가진 선을 고르게끔 하는 '개인의 행동'을 측정한 [실험 1]의 2~4번째 줄은 사전 검사를 한 것에 해당하는 것이죠.
실험 처치가 이루어진 후 다시 표준선과 같은 길이를 가진 선을 고르게끔 하는 '개인의 행동'을 측정한 [실험 1]의 뒤에서 3번째 줄~마지막은 당연히 사후 검사를 한 것에 해당하는 것이고요.
위의 요소는 아직 평가원이 출제한 연구 사례 문항에서 깊게 다루어진 적 없는 것이고, 현재 연구 사례를 깊게 물어보는 평가원 시험의 경향 상 출제될 가능성이 상당히 높은 것들이니 위 문항을 통해 미리 자세하게 봐 두시기 바랍니다!
17. 2024년 고3 7월 모의고사 15번
중요도: 5/5
해당 문제에서 등장한 미 출제 요소는, 바로 '벤 다이어그램의 빈칸 채우기'입니다.
현재까지 평가원 시험에서 두 가지 변수를 가진 벤 다이어그램이 출제된 사례는 많이 있었으나, 그 사례들은 작년 수능을 제외하고는 모두가 '제도 1의 수급자 비율', '제도 2의 수급자 비율', '제도 1과 2의 중복 수급자 비율'이 주어진 형태였습니다.
위 형태에서 '제도 1 or 2만의 수급자 비율'을 구하기 위해서는 전체 수급자 비율에서 중복 수급자 비율을 빼면 되고, 이 아이디어는 이미 많은 빈도로 출제가 되었죠.
그러나 위 문항은 다릅니다: 위 문제는 '제도 1만의 수급자 비율'과 '제도 2만의 수급자 비율'을 제시한 뒤, 이를 이용해 '제도 1과 2의 중복 수급자 비율'을 구하는 형태로 주어졌습니다.
때문에 많은 학생들은 이를 구하기 위한 방법을 찾지 못해 정답을 찾아내지 못했으나, 벤 다이어그램을 그려보면 전체 비율에서 '제도 1만의 수급자 비율'과 '제도 2만의 수급자 비율'을 모두 빼면 '제도 1과 2의 중복 수급자 비율'이 등장한다는 것을 바로 알 수 있죠.
구분 | A만의 수급자 비율 | A와 B 중복 수급자 비율 | B만의 수급자 비율 |
(가) 지역 | 65 | 10 | 25 |
(나) 지역 | 71 | 15 | 14 |
이 요소가 주는 교훈은 다음과 같습니다: '벤 다이어그램을 그려야 하는, 다시 말해 중복 수급자가 제시된 형태의 문항에서는, 일단 벤 다이어그램을 그려보자.'
위와 같은 형태 외에도 '제도 1 또는 2의 수급자 비율', '제도 1의 수급자 비율', '제도 2의 수급자 비율'의 3가지가 주어진 형태 등 벤 다이어그램을 활용해야 하는 문제는 언제나 새로운 형태를 가지고 등장할 수 있습니다.
그리고 이러한 새로운 형태의 문항을 마주했을 때 여러분이 기억해야 할 것은 이 한 가지입니다: '벤 다이어그램을 실제로 그려보자!'
이것이 이 문항이 주는 교훈이자, 이 미 출제 요소가 응용되어 출제될 수 있는 방식입니다.
-> 2025학년도 9월 모의평가 15번, 2025학년도 대학수학능력시험, 2026학년도 6월 모의평가 15번에 출제되었습니다.
18. 2024년 고3 7월 모의고사 19번
중요도: 2.1/5
해당 문항에서 등장한 미 출제 요소는, 바로 '각 학생의 평균 점수'입니다.
위 문항의 경우는 '갑은 을에 비해 낮은 점수를, 병에 비해 높은 점수를 기록했습니다.'의 힌트가 주어져 있기에 곧바로 갑이 1점, 을이 2점, 병이 0점을 얻었다는 사실을 알 수 있게끔 주어졌죠.
그러나 위 요소는 얼마든지 더 높은 난이도를 가지고 출제될 수 있는 여지를 가지고 있습니다: 갑, 을, 병이 받은 점수의 상관관계 조건을 빼고, 각자가 얻은 점수를 각자의 진술을 통해 추측하게끔 출제가 된다면 해당 요소는 엄청난 파괴력을 가지고 있을 수 있습니다.
그러나 위 요소가 등장한 것은 교육청까지 포함해도 위 문항이 최초이기에, 해당 요소에 대해서 그 정도로 심도 있는 대비가 이루어지기는 힘들 것입니다.
또한 위 요소는 너무 구체적인 요소이기에, 여기서 언급한 다른 요소들에 비해 평가원에서 정확하게 짚어서 출제를 할 확률도 상대적으로 떨어지기는 하죠.
따라서 현재 여러분이 할 수 있는 것은 '각 학생의 평균 점수가 주어지면, 모든 학생의 총합 점수가 몇 점이 되어야 하는지 파악하기.' 정도입니다.
여타 다른 채점형 문항들처럼, 위 문항도 시작 지점을 잘 잡는 것에 집중해야 하는 것이며, 바로 그 시작 지점은 모든 학생의 총합 점수를 파악하는 것입니다.
그 이후 각 학생이 확실하게 얻은 점수를 파악하고 나면, 이후에는 자연스럽게 각 학생이 실제로 얻은 점수가 몇 점인지를 파악할 수 있게끔 출제가 될 것입니다.
이 정도만 기억한 채, 다음 문제로 넘어가 보도록 하죠.
19. 2024년 고3 7월 모의고사 20번
중요도: 4.7/5
해당 문항에서 등장한 미 출제 요소는, 바로 '부양비 사이의 비 = 인구의 비'입니다.
위 문항에는 '유소년 부양비 : 노년 부양비'의 조건이 등장했습니다: 그리고 물론, 해당 조건은 인구 부양비를 구해서 비교하는 식으로 활용할 수도 있습니다.
그러나 유소년 부양비와 노년 부양비 모두 부양 인구를 분모로 가지고 있는 점을 감안하면, '유소년 부양비 : 노년 부양비'는 '유소년 인구/부양 인구 : 노년 인구/부양 인구'로 파악할 수 있습니다.
여기서 양쪽에 부양 인구를 곱해주고 나면, '유소년 인구 : 노년 인구'로 파악을 할 수 있습니다.
결국 결론은, 유소년 부양비와 노년 부양비는 모두 분모로 부양 인구를 공유하므로 '유소년 부양비 : 노년 부양비'는 '유소년 인구 : 노년 인구'로 해석할 수 있다는 사실입니다.
해당 요소는 아직 한 번도 평가원 시험에 출제된 적은 없으나, 인구 부양비 도표 자체가 최근 킬러 유형으로 고정적으로 등장하는 만큼 위 사항에 대해 알아둔다면 분명히 도움을 받는 순간이 오리라 확신합니다.
20. 2025년 고3 5월 모의고사 11번
중요도: 3.0/5
해당 문항에서 등장한 미 출제 요소는, 바로 'A가 비판하는 B의 관점'입니다.
물론 위 문항에서는 관련하여 6줄에 걸쳐서 언급이 있었기에, 첫 문장에서 해당 사항이 비판에 대한 내용이란 걸 잡지 못한 학생들도 이후 문장을 읽어가며 갑과 을의 관점이 어떤 것인지를 파악할 수 있었죠.
하지만, 만약 단 한 줄로 언급이 끝나고, ㄱㄴㄷㄹ의 형태로 출제가 된다면 어떨까요?
잘못 읽게 될 경우 바로 오답을 고르게 되겠죠.
이는 위 문항(2026학년도 9월 모의평가 대비 사피엔스 모의고사 2회)에서 제가 이미 다룬 형식이기도 합니다.
또는 아예, 발문에서 '다음 글에서 비판하는 관점'의 형식으로 내용이 주어진다면 어떨까요?
사실 이 역시, 더프 등 사설에서 빈번하게 다루어진 형식입니다.
그만큼 여러분은, 위 문항에 있어서 더 낚이기 쉬운 형태로 변형이 이루어질 가능성을 항상 염두에 두고 있어야만 하죠.
21. 2025년 고3 5월 모의고사 15번
중요도: 5.0/5
해당 문항에서 등장한 미 출제 요소는, 바로 '분모가 다른 가중평균'입니다.
많은 학생들은 가중평균을 활용함에 있어 관성적으로 '전체 인구'를 비교할 수 있는 수단으로 여기나, 위 문항과 같이 이에 해당하지 않는 경우 역시 분명히 존재합니다.
그리고 비교할 수 있는 것은 '가중평균이 활용된 분수의 분모 값'이기에, 위 문항에서 '해당 지역 (나) 수급자 대비 중복 수급자'에서는 비교할 수 있는 것이 '(나) 수급자'가 되겠죠.
이 요소가 왜 이렇게까지 높은 중요도를 할당받게 되었는지는, 오지선다 주제에 86%를 찍은 위 문항의 오답률이 그 대답을 대신 해 줍니다.
심지어 위 문항은 가중평균을 활용하지 않고 단순 계산만으로도 ㄴ을 구할 수 있게끔 배려를 해 주었고, 그럼에도 해당 오답률이 나왔는데, 만약 오로지 가중평균만을 활용해야 하게끔 아래와 같이 출제가 된다면 어떻게 될까요,,?
이는 위 문항(2026학년도 6월 모의평가 대비 사피엔스 모의고사)에서 제가 이미 다룬 형식이기도 합니다.
해당 모의고사 후기를 보니, 위 문항을 의도한 대로 성공적으로 풀어냈던 학생의 비율은 극히 적었죠.
때문에 어려분은, 위 5월 모의고사 문항을 학습함에 있어서 ㄴ을 구할 때, 단순 계산 외에도 가중평균을 활용하여 그 값을 구하는 연습을 반드시 한 번 해 보셔야만 합니다.
수능 당일에 어떤 문항이 등장하게 될지는, 정말 아무도 모르는 것이기 때문이죠.
22. 2025년 고3 7월 모의고사 12번
중요도: 1.8/5
해당 문항에서 등장한 미 출제 요소는, 바로 '같은 응답의 묶음'입니다.
사실 사문보다는 정법에서 매우 빈번히 등장하던 요소로, 정법을 학습한 적이 있는 학생들은 매우 익숙하게 풀어 나갔을 내용입니다.
그리고 그 경험이 없더라도, 난이도 자체가 그리 높지는 않기에 문제 해결에 크게 걸림돌이 되는 요소는 아니었을 것이죠.
그냥 '이런 게 있구나' 정도로 알아두신 뒤, 가볍게 넘어가시면 되겠습니다.
2026 사회·문화 Hesco 모의고사
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
전형적인 3
전형태
-
저는 진짜 좀 아니라고 생각함 학생이 미숙하긴 했지만 저렇게 박제하고 개념없다 할...
-
순대렐라짱친 이걸로 ㄱㄱ
-
3모 불 5,6,7,모 물 과연 9모 수능은,,
-
우리 함께 갑시다
-
이대로 자긴 글었다
-
뭔가 살면서 한번 만나보고 싶음 140후반 150초반 이런애들은 체감상 내 배꼽이...
-
미연시 추천좀 2
뉴비임
-
부탁드립니다
-
키큰여자가 좋음 3
멋있잔아 내가그럼ㅎ170
-
폰이랑 패드 끄고 있는거 같은데 다음 날에 덜 피로하고 전체적으로 좋은거 같음 잘자쇼
-
급합니다
-
10센치 차이가 젤 좋아 성숙한 느낌도있고
-
너는 지금 뭐해 2
자니
-
고대남 숫자 체크하자
-
그런가 3
-
https://orbi.kr/00038429389 노예 vs 호형훈제(교과과정...
-
난 내가 수학 잘하는편인줄 알았는데 사실 정적분 진도 거의 끝냈고 (다 끝내지도...
-
뺀거야 ㅇㅇ
-
2021 가형 1컷이 92라는게 신기해보이는데 왜 그런건가요
선생님 항상 좋은글 아리가또입니다
사문 질문이 하나 있는데 시간이 되시면 답변 해주시면 진짜 정말 감사하겠습니자
재사회화,지위 이 두가지 개념이 명확하게 안떨어지는거 같아 고민입니다…ㅜㅜ 지위는
한 개인이 사회나 집단 속에서 가지는 위치
재사회화는 변화에 적응하기 위해서 새롭개 등장한 가치나 지식을 내면화 하는 과정이라고 생각하는데
기출을 풀다보니 작년 9모의 악성민원인이 왜 지위가 아닌지 저 스스로 설명을 몬하갰더라고요 ㅜㅜ
아닌건 알겠는데 명확하게 설명을 못하겠습니다 민원인도 지위가 맞는지요..
재사회화는 밑에 첨부한 사진처럼 등장인물이 철학자를 만난 계기로 철학에 뜻으넬 품은거니 변화라고 볼수있지 않나요??
안녕하세요 사문이 먼저다 경제인입니다.
민원인은 지위에 해당하지 않습니다.
지위란 실제 사회에서 개인이 차지하고 있는 위치로, 민원인은 개인이 동사무소 또는 시청 등에 문제 해결을 하러 갔을때 불리는 일시적 명칭에 불과합니다.
비슷한 사례로 손님, 여행객 등이 있습니다. (출제된 적 없음)
더불어 악성 민원인의 “악성”과 같이 특정 가치관이 포함된 단어가 나타나면 지위로 보기 어렵습니다.
지위가 될 수 없는것들을 정리해보면
1) 별명 - ~~라고 불리는 / 특정 가치관이 포함된 단어 (천사 사장님, 악마 조교 등)
2) 이상주의자 (채식주의자, 평화주의자 등)
3) 영화 드라마의 배역 --> 실제 사회가 아니라 가상의 사회이기 때문에 아님
등이 있는데, 악성민원인은 굳이 분류 하자면 1번 별명에 해당하기 때문에 민원인이 지위인지와는 무관하게 성취지위가 될 수 없습니다.
"사문이 먼저다 경제인"유튜브 채널에서 위와 같은 내용에 대한 설명을 자세하게 해 두었으니 참고하시면 좋을것 같습니다 (기출 - 개인과 사회화 단원 강의)
와 선생님 개추입니다 정말감사해요
고마우면 구독하기..!
저 2409 7번 개어렵던데
와넘좋다지우지말아주세여
선생님 글은 날잡고 쭉 정독해야겠습니다 너무 도움되네요