[칼럼] 해설지는 '설명'하라고 있는건데
게시글 주소: https://orbi.kr/00074311314
나형 19년 9월 30번
개인적으로 까다로운 문제라고 생각하는데
더 큰 문제는 해설지가
여기까진 잘 가다가
갑자기 자명타 한 마디를 내뱉으시고 계산 작업에 착수하시어서
몇 자 끄적여볼까 합니다
먼저 시작은 해설지처럼 치환을 하고 들어가는건데
f=x인 경우라면 조건을 만족하겠으나
안타깝게도 f는 삼차함수인지라 저런 경우는 많아봐야 실근이 3개밖에 안 나오므로
f!=x인 경우가 무조건 존재해야겠네요
그렇다면 어떠한 사고가 가능한가?
f!=x인 경우에 대하여 f(alpha)=beta, f(beta)=alpha가 성립한다면 조건식을 만족하니 이런 경우가 반드시 존재하는데
이런 alpha와 beta가 존재한다면 사잇값 정리에 의해서 f-x=0인 경우가 무조건 세가지 이상 존재하게 되고
f-x 역시 삼차함수이므로 f-x=0인 경우가 딱 세가지 존재하여
이 세 실근과 alpha, beta가 조건을 만족하는 0, 1, a, 2, b가 됨을 알 수 있습니다
그리고 이 실근의 대소관계는 주어져 있으니 alpha와 beta의 대소관계를 설정해주면
자연히 f(0)=0, f(a)=a, f(b)=b이고, f(1)=2, f(2)=1임을 알 수 있습니다
남은 건 계산 뿐인데
계산 역시 f(0)=0을 중심으로 하면, f(1)과 f(2)를 지나는 직선은 유일하게 존재하니까 인수 x를 설정하고 남은 식을 다음과 같이 조작하면 계산량을 줄일 수 있습니다
사실 결론적으로는
삼차함수의 대칭 관계를 통해 a=3/2이고 해당 점이 변곡점이라는 것을 캐치하고
f-x=kx(x-3/2)(x-3)으로 정리해버리는 것이 제일 깔끔하긴하지만
f(0)=0, f(1)=2, f(2)=1을 지나는 삼차함수가 무수히 많이 존재하는지라...
아무튼 자명타가 왜 자명한지 따져보는 것은
본인의 수학 실력에 언제나 도움이 됩니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
아예 가능성 없을까요ㅠㅠ
-
어느거 하실?
-
나랑 비슷한 실력에서 올라온 사람같은데 2등급이래 난 4등급인데..
-
야 5
난 넷상말고 현실에서 이말이 ㅈㄴ무섭고 소름돋고 듣기싫음 내가 뭐 잘못한거같아괜히
-
난 멍청이야
-
오늘 국어 때문에 그런가 멘탈 개조져서 일찍 집와서 아무것도 안했는데... 고민이...
-
음함수 매개변수 <- 내게 단독문제로 효용이 없고 킬러 문항 처음이나 끝을 풀어나가는 용도로 쓰임
-
히히
-
시발뭐가문제지 6
돈도존나많고부족한것도없는데너무공허함
-
https://brunch.co.kr/magazine/kim00020story1...
-
딴따라들은 있든 없든 세상에 아무런 영향도 없음. 다 사라져도 순식간에 대체되면서...
-
지갑 두고와서 초코바 두개로 버팀
-
돈 많이벌고 이런걸 떠나서 얼굴 공부하는게 너무 재밌어 참고로 최근에 찾아보다...
-
4문제남음

칼럼개추
캬..마지막계산 f(x)-(-x+3)=(x-1)(x-2)(px+q)로 두고 하는것도 좋다고생각
1. 인수 세 개로 표현하면 미분이 어려워지고
2 f(0)=0을 제대로 담아내려면 저렇게 표현하는 것이 좀 더 낫다고 여겼습니다
헉
자명타가 왜 자명한지 따져보는 것은 본인의 수학 실력에 언제나 도움이 됩니다
라는 말씀 참 공감이 많이 되네요
수학과 교수님께서 수학은 당연한것을 당연하지 않게 받아들일때 시작되는거라고 하셨었는데 같은 맥락인거 같다는 생각이 듭니다
제 기억에도 수학 공부를 할때는 항상 서술형 문제를 풀듯이 식을 자세하게 적으려고 노력했는데 그게 수학 실력이 성장하는데 많은 도움이 되었던것 같네요.
그렇게 문제를 바라보면 따로 논술 준비를 할 필요도 없어지죠
수능 1등급만 찍는게 목표라면 반복훈련만 잘 해도 되는데, 그 이상을 노린다면 한번쯤 저런 시야로 문제를 바라보는게 좋죠
과외할때 학생들이 젤 많이 물어보는 기출중 하나네요
왜 합성함수로 치환하면 안되는지, 함수 박스 그려가면서 설명해주면 잘 알아먹더라고요 ㅋㅋ
사실 그림 안 그리는 문제인데…
결국 시각화해주는게 제일 와닿긴하죠