[칼럼] 해설지는 '설명'하라고 있는건데
게시글 주소: https://orbi.kr/00074311314
나형 19년 9월 30번
개인적으로 까다로운 문제라고 생각하는데
더 큰 문제는 해설지가
여기까진 잘 가다가
갑자기 자명타 한 마디를 내뱉으시고 계산 작업에 착수하시어서
몇 자 끄적여볼까 합니다
먼저 시작은 해설지처럼 치환을 하고 들어가는건데
f=x인 경우라면 조건을 만족하겠으나
안타깝게도 f는 삼차함수인지라 저런 경우는 많아봐야 실근이 3개밖에 안 나오므로
f!=x인 경우가 무조건 존재해야겠네요
그렇다면 어떠한 사고가 가능한가?
f!=x인 경우에 대하여 f(alpha)=beta, f(beta)=alpha가 성립한다면 조건식을 만족하니 이런 경우가 반드시 존재하는데
이런 alpha와 beta가 존재한다면 사잇값 정리에 의해서 f-x=0인 경우가 무조건 세가지 이상 존재하게 되고
f-x 역시 삼차함수이므로 f-x=0인 경우가 딱 세가지 존재하여
이 세 실근과 alpha, beta가 조건을 만족하는 0, 1, a, 2, b가 됨을 알 수 있습니다
그리고 이 실근의 대소관계는 주어져 있으니 alpha와 beta의 대소관계를 설정해주면
자연히 f(0)=0, f(a)=a, f(b)=b이고, f(1)=2, f(2)=1임을 알 수 있습니다
남은 건 계산 뿐인데
계산 역시 f(0)=0을 중심으로 하면, f(1)과 f(2)를 지나는 직선은 유일하게 존재하니까 인수 x를 설정하고 남은 식을 다음과 같이 조작하면 계산량을 줄일 수 있습니다
사실 결론적으로는
삼차함수의 대칭 관계를 통해 a=3/2이고 해당 점이 변곡점이라는 것을 캐치하고
f-x=kx(x-3/2)(x-3)으로 정리해버리는 것이 제일 깔끔하긴하지만
f(0)=0, f(1)=2, f(2)=1을 지나는 삼차함수가 무수히 많이 존재하는지라...
아무튼 자명타가 왜 자명한지 따져보는 것은
본인의 수학 실력에 언제나 도움이 됩니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
보내주기로했어 10
잘 키워줘 다들
-
주변 사람들이 문학론 추천해서 고2 여름방학때 김상훈 문학론 들었는데 교재는 좋은데...
-
하자의 치유 2
사후에 하자의 원인이 되는 법률요건을 충족하거나 취소를 요하지 않을 정도로 경미 =...
-
진짜임
-
저 유튜브 나옴요 10
https://youtu.be/yQBfj_03pSY?si=shplcYP9l-gDz0q4
-
두통은 이틀째고
-
그럼 뭐라고 해야되나요? 기억이 안나요
-
여르미 레어를 사면 11
누군가가 빛의 속도로 다시 가져간다고 한다. 난 이 이야기를 참 좋아한다.
-
국어는 1~2 진동합니다 인문논술 오늘 첫 수업인데 많이 늦었나요?
-
다음 n제로 추천해주실만한 거 있나요??
-
첫 시행에 3을 뽑는다 였는데 3점으로 해석해서 20나옴..ㅋㅋ
-
이래서 다들 나가는거엿어
-
일단 가성비 좋을거같아서 전과목 다 사놓긴했는데
-
브크cc -> rnp -> 기출db -> 리트300제 순으로 들으면 됨?
-
[무료배포] 사회문화 모의고사 (9모 대비 유종의 미 모의고사 1회) 5
안녕하세요 유튜브에서 사문이 먼저다 경제인으로 활동중인 사회문화 강사 유종현입니다....
-
점심 8
Frank
-
사실 안 본다가 맞는건가
-
커흑ㅠ

칼럼개추
캬..마지막계산 f(x)-(-x+3)=(x-1)(x-2)(px+q)로 두고 하는것도 좋다고생각
1. 인수 세 개로 표현하면 미분이 어려워지고
2 f(0)=0을 제대로 담아내려면 저렇게 표현하는 것이 좀 더 낫다고 여겼습니다
헉
자명타가 왜 자명한지 따져보는 것은 본인의 수학 실력에 언제나 도움이 됩니다
라는 말씀 참 공감이 많이 되네요
수학과 교수님께서 수학은 당연한것을 당연하지 않게 받아들일때 시작되는거라고 하셨었는데 같은 맥락인거 같다는 생각이 듭니다
제 기억에도 수학 공부를 할때는 항상 서술형 문제를 풀듯이 식을 자세하게 적으려고 노력했는데 그게 수학 실력이 성장하는데 많은 도움이 되었던것 같네요.
그렇게 문제를 바라보면 따로 논술 준비를 할 필요도 없어지죠
수능 1등급만 찍는게 목표라면 반복훈련만 잘 해도 되는데, 그 이상을 노린다면 한번쯤 저런 시야로 문제를 바라보는게 좋죠
과외할때 학생들이 젤 많이 물어보는 기출중 하나네요
왜 합성함수로 치환하면 안되는지, 함수 박스 그려가면서 설명해주면 잘 알아먹더라고요 ㅋㅋ
사실 그림 안 그리는 문제인데…
결국 시각화해주는게 제일 와닿긴하죠