삼각함수 세타 안돌리고 편하게 각변환하는법
게시글 주소: https://orbi.kr/00074274991
투표 반응이 좋아서 올려봅니다.
고2 시절때 처음 본 당시엔 끔찍할만큼 외울게 많아보였던
그때 그 시절 추억이 돋습니다.
그때 제가 개발한 나름의
추억이 담긴 기술인 6글자 암기법을
공유해드리도록 하겠습니다.
(어쩌다가 이걸 지금까지 써먹는지는 잘 모르겠습니다.)
학원에서 올사탄코 좌표평면에서 세타돌려서 어느 각에 있는지
사분면 잡으라 알려주신 거에서 저는 고2시절 그것도 좀 불편했어서 걍
6글자로 압축해 외워본 수법입니다.
(기존 방법이 나으시면 원래 방법을 쓰셔도 각변환에
전혀 지장없으니 참고만 해주시면 감사하겠습니다.)
원리는 참 간단해요. 6글자만 입으로 따라하며 암기해주시면 sin,cos,tan의 각변환은 끝납니다.
"반마그 플반반"
네 이게 정말 끝입니다.
그럼 이걸 어따 써먹는지 설명만 하고 마치도록 하겠습니다.
(여기서 θ는 당연히 항상 양수로 나옵니다. 더 나은 방법일수도 있는 것을 제안드리는 글이므로
기본적인 방법들은 당연히 알고계실거라 전제하고 쓰겠습니다.)
여러분은 해당 식들을 보고 규칙성을 느끼셨나요?
[π일때⇒반마그]
sin(π±θ) ⇒ 항상 예각(θ) 부호의 반대가 sin에 붙어 나옵니다.
cos(π±θ) ⇒ 항상 마이너스가 cos에 붙어 나옵니다. (+θ든 -θ든 결과는 항상 -cosθ 잖아요?)
tan(π±θ) ⇒ 항상 θ의 부호 그대로가 tan에 붙어 나옵니다. (이건 걍 당연하죠 tan의 주기가 π니깐)
[π/2일때⇒플반반]
sin(π/2±θ) ⇒ 항상 플러스가 cos에 붙어 나옵니다.
cos(π/2±θ) ⇒ 항상 예각(θ) 부호의 반대가 sin에 붙어 나옵니다.
tan(π/2±θ) ⇒ 항상 예각(θ) 부호의 반대가 tan에 붙어 나옵니다.
sin,cos,tan의 원점대칭(기함수),y축대칭(우함수) 성질은 굳이 말하진 않겠습니다.
아마 고3,N수생 분들께서는 혼자서 이미 잘 하실거라 생각되네요.
[참고로 3π/2일때는 마그반을 적용하시면 됩니다]
순서는 sin,cos,tan 순입니다
⇒반마정(π) 플반반(π/2) 마정반(3π/2)
(근데 제 경험상 3π/2는 나머지 둘보다 훨씬 드물었어서
실질적으로는 고3,N수생 분들은 6글자만 해도 충분합니다.)
여전히 주의할 점은 여전히 2분의 파이일 땐 어느 방법이나 변함없이
sin을 cos으로
cos을 sin으로
tan는 1/tan으로 바꾸시는 걸
당연히 잊으시면 안되겠죠?
고2때 구상한 별거 아닌 6글자 암기법이지만
나름 계산할때 머리가 편한(??) 느낌도 있는 것 같아서
유용하다고 생각되는 분들은 쓰시고, 아니면 걍 이런 방법도 있구나~ 정도로만
참고해주세요
제 글을 읽어주셔서 감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
사회성 ㅈ박았네 1
예전에 저런 곳 아무렇지 않게 혼자 들어갔는데...
-
오르비 보다가 생각났는데 난 중학교 3년 내내 왕따였음 3
내가 좀 정신세계가 특이하다 그래야 되나? 암튼 그런데 이게 중학교 땐 지금보다...
-
일단 22번 근이 정수이다에서 식이 걍 결정이 되는데, 무리수 들어간 분수꼴을...
-
처음 읽고 문제 풀면 다 썰리고 두 세 번 읽고 드가면 이딴 걸 왜 틀렸나 싶을...
-
있으면 알려주실 수 있나요ㅠㅠ
-
화작 공부법좀 1
반수생이고 작수 이후 다 까먹어서 언매 공부할 시간 없을 거 같아 화작런 하려는데...
-
아진짜돌겠네 3
보건실가서 아프다하고 한교시만 있으려고요 아니면 아예 통으로빠질까요?내일 주요과목은...
-
ㄴ 선지 도대체 왜 둘 다 부정인가요... 저는 둘 다 긍정으로 보고 틀렸다고...
-
대학 반만 가겟네
-
https://orbi.kr/00074286680 다들 많은 관심 부탁드립니다
-
예쁘시네 1
-
단두대는처음이라고,, 사형집행인에게말하니까.. 안아프니까걱정하지말라시더라,, 근데정말안아팟어,,
-
11시에뵈어요.
-
정시라 무단으로 빠질건데 유급 안당할정도만. 나중에 사회 나가서 받는 불이익 뭐뭐있음
-
안녕ㄴ안녕 3
안녕앙녕
-
만약 과 잘못 고르면 인생 나락임? 너무 한 거 아님??
-
작년에 우기분 들은 친구들 올해 내내 강기분 새기분 들은 친구들 (물론 기출분석은...
-
이거어케풂 2
꿀팁좀요형들
-
고2 노베인데 아래 해설 과정을 이해못하겠습니다. 고인물님들 도와주십쇼..
전 각변환 잘 모르고 그냥 그래프 머리에서 그려서 그때그때 대칭으로 계산하는데
수능 칠때는 시간 줄이는 목적으로 이런것도 다 외우는게 좋을까요?
어차피 저는 수능 수학에서 이런 작은 시간을 줄인다고
크게 달라지지는 않는다고 생각합니다.
차피 미세한 시간차이를 더 줘봤자
애당초 실력이 뒷받침되지 못하면
틀릴 문제는 틀리거든요.
단지, 평소 계산에서 좀 더 머리가 편안한 느낌을 얻어서 저는
이 방법을 써왔던 거에요.
사실, 효율성을 떠나서 가장 잘 맞는 방법이 가장 적합한 방법이라고 저는 생각합니다
살짝 인강강사 고르는 느낌이랄까요?
무조건 1타면 잘 맞을거라 생각하기보단
본인에게 가장 잘 맞는 강사가 최적의 강사인 것처럼
방법도 체화하여 실전에 적용할 수 있는 방법이
가장 적합하다고 생각합니다.
저는 이 방법이 고2시절 때부터 계속 써왔던 방법이라 공유,소개 정도의 느낌으로만
작성하는게 글의 목적이었음을 강조드리고 싶네요.
속도가 아무리 빨라도 적용이 어려우면 최악의 방법과 다를게 없죠.
그래도 이 방법이 괜찮거나
6글자로 압축해 적용하는게 편하게 느껴지시는 분들은
제 글을 참고해주시면 감사하겠습니다
10년전도 지금도 그냥 아묻따 단위원 그림ㅋㅋ