ai에게 미적30 풀려보기
게시글 주소: https://orbi.kr/00074215881
출시한지 5시간된 epsilon 모의고사의 미적 30번을
제미나이 2.5 pro에게 풀어달라함.
3~4분 정도 생각하고 답을 주었음.
다음은 문제 풀이입니다.
주어진 문제의 조건들을 단계별로 분석하여 f(x)를 찾고 f(6)의 값을 계산해 보겠습니다.
1. 함수 g(x)와 조건 |xg(h(x))| = g(x)h(x) 분석
모든 실수 x에 대해 |xg(h(x))| = g(x)h(x)가 성립합니다. 절댓값의 결과는 항상 0 이상이므로, g(x)h(x) ≥ 0 이어야 합니다.
이제 g(x)의 부호를 각 구간에서 살펴보겠습니다.
* x ≤ 0 인 경우:
g(x) = x(x+2)² 입니다. (x+2)² ≥ 0 이므로 g(x)의 부호는 x의 부호에 따라 결정됩니다.
* x < 0 이면 g(x) < 0 입니다. g(x)h(x) ≥ 0 이 성립하려면 h(x) ≤ 0 이어야 합니다.
* x = 0 또는 x = -2 이면 g(x) = 0 이므로, g(x)h(x) ≥ 0은 항상 성립하며 h(x)에 대한 정보를 주지 않습니다.
* x > 0 인 경우:
g(x) = xe^x|f(x) - 2| 입니다. x > 0, e^x > 0, |f(x)-2| ≥ 0 이므로, 이 구간에서 항상 g(x) ≥ 0 입니다.
g(x)h(x) ≥ 0 이 성립하려면 h(x) ≥ 0 이어야 합니다.
요약하면, h(x)의 부호는 다음과 같습니다.
* h(x) ≤ 0 for x < 0
* h(x) ≥ 0 for x > 0
2. h(x)의 x=0에서의 극한값 분석
문제의 조건 (가)와 (나)를 사용하여 x=0 근방에서 h(x)의 성질을 파악해야 합니다.
* (가) x ≤ 0에서 함수 |h(x)|는 연속이다.
이는 x=0에서 좌극한과 함숫값이 같음을 의미합니다: lim_{x→0⁻} |h(x)| = |h(0)|.
x<0에서 h(x)≤0이므로, |h(x)| = -h(x) 입니다.
따라서, lim_{x→0⁻} (-h(x)) = -h(0⁻) = |h(0)| 입니다.
* (나) lim_{x→0⁻} (|h(x)| - |h(0)|)/x = e⁴ * lim_{x→0⁺} (|h(x)| - |h(0)|)/x
이 등식이 성립하려면 우변의 극한값이 존재해야 합니다. x→0⁺일 때 분모가 0으로 수렴하므로, 분자도 0으로 수렴해야 합니다.
즉, lim_{x→0⁺} |h(x)| = |h(0)| 이어야 합니다.
x>0에서 h(x)≥0이므로 |h(x)|=h(x)입니다.
따라서, lim_{x→0⁺} h(x) = h(0⁺) = |h(0)| 입니다.
정리하면, h(0⁺) = -h(0⁻) = |h(0)| 입니다.
이제 h(0⁻)의 값을 찾아봅시다.
|xg(h(x))| = g(x)h(x) 식에서 x < 0일 때, |x| = -x 이고 g(x) = x(x+2)² 이므로,
-x|g(h(x))| = x(x+2)²h(x)
x ≠ 0 이므로 양변을 x로 나누면,
-|g(h(x))| = (x+2)²h(x)
h(x) ≤ 0 이므로 g(h(x)) = h(x)(h(x)+2)² 입니다. 또한 h(x)가 0에 가까워지면 h(x)(h(x)+2)² ≤ 0 이므로 |g(h(x))| = -g(h(x)) 입니다.
-(-g(h(x))) = (x+2)²h(x)
g(h(x)) = (x+2)²h(x)
h(x)(h(x)+2)² = (x+2)²h(x)
h(x)[(h(x)+2)² - (x+2)²] = 0
따라서 h(x)=0 이거나 (h(x)+2)² = (x+2)² 입니다. 후자의 경우 h(x)+2 = ±(x+2) 이므로, h(x) = x 또는 h(x) = -x-4 입니다.
x → 0⁻ 일 때, h(x)는 h(0⁻)로 수렴해야 합니다.
* h(x) = x 이면 h(0⁻) = 0 입니다.
* h(x) = -x-4 이면 h(0⁻) = -4 입니다.
두 가지 경우를 모두 고려해야 합니다.
* Case 1: h(0⁻) = 0
이 경우 h(0⁺) = -h(0⁻) = 0 이고 |h(0)|=0 이므로 h(0)=0 입니다. 즉, h(x)는 x=0에서 연속입니다.
h(x) = x for x ≤ 0 이므로 좌미분계수 h'(0⁻) = 1 입니다.
조건 (나)에서 |h|'(0⁻) = -h'(0⁻) = -1 이고 |h|'(0⁺) = h'(0⁺) 이므로, -1 = e⁴h'(0⁺) 즉 h'(0⁺) = -e⁻⁴ 입니다.
그런데 h(x) ≥ 0 for x>0 이고 h(0)=0 이므로, h'(0⁺) ≥ 0 이어야 합니다. 이는 h'(0⁺) = -e⁻⁴ < 0 과 모순됩니다. 따라서 이 경우는 불가능합니다.
* Case 2: h(0⁻) = -4
이 경우 h(x)=-x-4 for x<0 (0 근방에서) 입니다.
h(0⁺) = -h(0⁻) = 4 입니다.
|h(0)| = 4 이므로 h(0)는 4 또는 -4 입니다.
3. f(x)에 대한 정보 찾기
x > 0 일 때의 관계식 |x g(h(x))| = g(x)h(x)를 다시 사용합니다.
x|g(h(x))| = g(x)h(x)
x|h(x)e^{h(x)}|f(h(x))-2|| = (xe^x|f(x)-2|)h(x)
h(x)>0이므로 |h(x)e^{h(x)}...| = h(x)e^{h(x)}|...| 입니다. x와 h(x)를 약분하면,
e^{h(x)}|f(h(x))-2| = e^x|f(x)-2|
이 식에 x → 0⁺ 극한을 취합니다. h(x) → h(0⁺) = 4 이므로,
lim_{x→0⁺} e^{h(x)}|f(h(x))-2| = e⁴|f(4)-2|
lim_{x→0⁺} e^x|f(x)-2| = e⁰|f(0)-2| = 1|2-2| = 0
따라서 e⁴|f(4)-2| = 0 이고, e⁴ ≠ 0 이므로 f(4)-2=0, 즉 f(4)=2 입니다.
f(x)는 최고차항의 계수가 1인 삼차함수이고 f(0)=2, f(4)=2 이므로 f(x)-2는 x와 x-4를 인수로 가집니다.
f(x) - 2 = x(x-4)(x-k) 로 놓을 수 있습니다. (k는 나머지 한 근)
f(x) = x(x-4)(x-k) + 2
f'(x) = (x-4)(x-k) + x(x-k) + x(x-4)
f'(0) = (-4)(-k) = 4k
문제에서 f'(0) > 0 이므로 4k > 0, 즉 k > 0 입니다.
이제 e^{h(x)}|f(h(x))-2| = e^x|f(x)-2| 식의 x→0⁺ 근방에서의 계수를 비교하여 k값을 찾습니다.
x→0⁺ 일 때, f(x)-2 ≈ f'(0)x = 4kx 입니다.
h(x)→4 이므로 h(x)=4+δ (여기서 δ→0) 라고 하면, f(h(x))-2 ≈ f'(4)δ = f'(4)(h(x)-4) 입니다.
f'(4) = (4-k)4 = 16-4k 입니다.
원래 식에 이 근사값들을 대입하면,
e^{h(x)}|f'(4)(h(x)-4)| ≈ e^x|4kx|
x→0⁺ 극한을 취하면, h(x)→4, e^x→1 이므로,
e⁴|f'(4)| lim_{x→0⁺}|h(x)-4| ≈ |4k| lim_{x→0⁺}|x|
e⁴|16-4k| |h'(0⁺)| ≈ 4k (∵ k>0, x>0)
조건 (나)에서 |h|'(0⁺)를 구해야 합니다.
h(x)=-x-4 for x<0, |h(x)|=|-x-4|=x+4 (0 근방에서).
|h|'(0⁻) = lim_{x→0⁻} (|h(x)|-|h(0)|)/x = lim_{x→0⁻} (x+4-4)/x = 1.
조건 (나)에 의해 1 = e⁴|h|'(0⁺), 즉 |h|'(0⁺) = e⁻⁴ 입니다.
h(0⁺)=4, |h(0)|=4 이므로 h'(0⁺) = |h|'(0⁺) = e⁻⁴ 입니다.
위의 계수 비교식에 |h'(0⁺)| = e⁻⁴를 대입합니다.
e⁴|16-4k| e⁻⁴ = 4k
|16-4k| = 4k
두 가지 가능성이 있습니다.
* 16-4k = 4k => 16 = 8k => k=2.
* 16-4k = -4k => 16 = 0 (불가능).
따라서 k=2 입니다.
4. f(6) 계산
k=2 이므로 f(x)는 다음과 같이 결정됩니다.
f(x) - 2 = x(x-4)(x-2)
f(x) = x(x-2)(x-4) + 2
이제 f(6)의 값을 계산합니다.
f(6) = 6(6-2)(6-4) + 2
f(6) = 6 * 4 * 2 + 2
f(6) = 48 + 2 = 50
따라서 f(6)의 값은 50입니다.
정답: 50
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
범작가 기밀문서 시즌2 p.62 3번 문제 (거문고 작품) 2
안녕하세요? 범작가님의 기밀문서로 국어공부하고 있는 학생입니다.기밀문서 시즌2...
-
확통 1
확통 레알비기너스듣다가 개념설명을 대충하는것같아서 쎈으로 독학했습니다 수분감...
-
문학 기출 중에 7
지문 내용에 구호소 가서 가락국수? 먹는 거 있었는데 무슨 작품인지 아시는 분 뭔가 슬픈 상황이었음
-
그치?
-
2022학년도 9월 모평 생활과 윤리 7번 2025학년도 9월 모의평가 사회·문화...
-
덕 주 가 3
코 고
-
정신상태를 미분해버려엇-!!-!!
-
문학이랑 독서 둘다 사려고하는데 뭐사야하나요?? 두개 차이는 뭔가여???
-
는 우리나라가 아닐까?
-
넵
-
확통 n제 추천해주세요 15
좀 근데 너무 실험적이지 않은데 또 너무 기출스럽지 않은걸로….
-
주고가 11
-
바라보니 귀엽습니다
-
진득하게 박아도 되나여?
-
이동준 들으니깐 해설을 거리곱으로 자주 해서 어쩔 수 없이 배우게 됨.. 어둠의 스킬을 배운 느낌
-
수열 싯팔 0
모든 값의 합을 구하라고 했는데 왜 하나만 나오는데
-
수1 쎈 B단계 0
고3 현역인데 오늘 하루종일 수학만 했어요 근데 쎈 B단계 푸는데 넘...
-
1컷 90점 극초반
-
현역이고 모고치면 보통 84 근처 받는데 N제 박치기만 하고 있었고 ( 공통 :...
-
보기싫다
-
코코이 2
?
-
문신 형님들 왜 나보다 어림..? 21살? 인지부조화 오네 ㅅㅂ
-
그저 대이브…..
-
헤이! 12
밤바라밤바라밤바라밤밤바라밤바라밤바라밤바라바라밤바라바라밤바라바라바라바라밤
-
애옹 10
댓글을 애옹으로 도배해 주세요
-
서바도 팔아주고 걍 다녀야겟누..
-
더이상 바라볼 내일이 없게될지도 모릅니다.. 다들 매일매일 오늘을 힘내봅시다!
-
화작 11분컷 10
하고 와르르 틀릴바에 14분 풀어서 다 맞는게 좋다
-
원래 수학 풀때 머릿속에서 파바밧 하면서 해결되는 느낌이 있어야되는데 요즘 뇌 빼고...
-
가장 최근 전국서바 1~4회 84 88 80 88 한 두 달정도전 기억 나는건...
-
애들 쫓아낸게ㅜ아니면 설명이 안돼 아
-
외로움 안타는데 뭔가 외롭네 친구 하나도 없고 독서실 - 학교 - 독서실 주말에는...
-
국어는 어려워 0
뭔가 정확한 해석을 하기가 힘드네..
-
??
-
그렇습니다
-
이기상 개념 기출 다 했고 6모 45에 더프 무보정 1 2 진동하는데 남은 100일...
-
앞으로도 계속 이 날씨엿으면
-
으하하하하하ㅏ하 3
자리 없는데 문신형님들 어쩌실건가요 :하하하
-
화작이랑 언매 등급컷 차가 너무 안나는데
-
똥 15
긴똥굵은똥얇은똥묽은똥토끼똥딱딱한똥설사똥바나나똥
-
3 4등급뜨는데 추천해주실 하프모고 있나여?
-
언제쯤 13
수학 얘기에 낄 수 있을까
-
15000 상한제 해야
-
10분 남아서 검토하다가 3개 고쳤는데 3개 다틀려서 7점 깎임 뭐에 홀렷나 ㅅㅂ
-
심심한데 놀아줘
-
바보라서 그래 6
너만 사랑하는 바보
-
집에가고싶어 3
-
제발좀
-
헤헤 넘 재밌다 2
복귀하기 싫어..
gpt 쓰는데 갈아탈까요
한국어로 질답 할때는
제미나이 2.5pro가 제일 좋은 듯하네요.
직각이네
오 개잘푸네