평가원 합답형 선지 구성의 미학
게시글 주소: https://orbi.kr/00074045287
평가원이 합답형을 구성하는 방식은 매우 엄격한 규칙을 따르고 있습니다. 왜 그런지에 대해 긴 설명 없이 바로 시작해보겠습니다.
먼저 일단 ㄱㄴㄷ, ㄱㄴㄷㄹ 합답형 구성 방식을 풀어 쓰면 다음과 같습니다.
학생 집합:
{갑, 을, 병} (총 3명, 경우 1)
{갑, 을, 병, 정} (총 4명, 경우 2)
경우 1의 선지(ㄱㄴㄷ): 5개, 각 선지는 1명, 2명 또는 3명의 학생으로 구성.
경우 2의 선지(ㄱㄴㄷㄹ): 5개, 각 선지는 2명 또는 3명의 학생으로 구성. 2명만으로도 선지 5개 구성이 가능하며, 2명과 3명이 섞인 선지일 시에는 2명은 3개, 3명은 2개여야함.
대칭차 (Symmetric Difference): 두 집합(정답과 오답 선지) 간에, 한쪽에만 속하는 원소들의 개수입니다. 예를 들어, 정답이 {갑, 을}이고 오답이 {을, 병}이라면, 대칭차는 {갑, 병}이 되어 그 크기는 2입니다.
제약 조건: 한 학생이 선지에 네 번 이상 들어가지 않습니다. (한 학생이 선지에 네 번 들어가면, 네 번 들어간 학생은 사실상 무조건 맞으므로 의미가 없어집니다.)
목표: 정답 선지 1개와 오답 선지 4개를 구성할 때, 정답과 4개 오답 선지 간의 '대칭차의 합'을 최소화하기.
경우 1: 학생 3명 {갑, 을, 병}
이때의 최소 대칭차 합은 6입니다. 이때의 최적 구성은 다음과 같습니다.
예시 정답 선지(갑, 을, 병이 서로 스위칭해도 동일합니다.): {갑}
예시 오답 선지: {을}, {병}, {갑, 을}, {갑, 병}
정답을 가장 작은 단위인 1명짜리로 잡고, 나머지 오답 선지들이 그 주변을 감싸는 형태입니다.
{갑}과 {을}의 대칭차는 2({갑,을}), {갑}과 {병}의 대칭차도 2({갑,병}). 여기까지 합이 4.
여기서 영리하게 {갑, 을}과 {갑, 병}을 오답으로 추가하여 {갑}과 {갑, 을}의 대칭차는 1({을}), {갑}과 {갑, 병}의 대칭차도 1({병}).
그래서 총합은 2 + 2 + 1 + 1 = 6으로 모든 원소(학생)의 등장 횟수를 보면 갑 3회, 을 2회, 병 2회로, 제약조건(4회 미만)도 깔끔하게 만족합니다. 최소 단위에서 파생되는 오답들을 구성하는 게 핵심입니다.
경우 2: 학생 4명 {갑, 을, 병, 정}
여기서부터가 진짜 문제라고 할 수 있습니다.
결론부터 이야기하면 최소 대칭차 합은 8이고, 이 최소값을 만드는 경우에서, 4C2는 6이지만 5지선다인 특성 상 가장 먼 {갑, 정}이 선택지에서 빠지기에 이 경우밖에 존재하지 않습니다.
정답 선지: {을, 병}
오답 선지: {갑, 을}, {갑, 병}, {을, 정}, {병, 정}
꽤나 아름다운 구조입니다. 최적의 선지 구성은 모든 선지가 2명으로만 이루어진 경우에서 나왔으며 2명짜리 3개, 3명짜리 2개 섞는 것보다 더 효율적이었다는 소리입니다. 왜 그럴까요?
정답인 {을, 병}을 기준으로, 오답 4개는 각각 정답과 원소 하나씩만 공유합니다.
{을, 병} vs {갑, 병} -> 대칭차 2 ({갑, 을})
{을, 병} vs {병, 정} -> 대칭차 2 ({을, 정})
{을, 병} vs {갑, 을} -> 대칭차 2 ({갑, 병})
{을, 병} vs {을, 정} -> 대칭차 2 ({병, 정})
경우 2a: 학생 4명 {갑, 을, 병, 정} 중 2명, 3명 혼합 선택
예시 선지 묶음: {갑,을}, {갑,병}, {을,정} (2명 선지 3개) + {갑,병,정}, {을,병,정} (3명 선지 2개) (구조만 같다면 스위칭도 가능합니다.)
이 묶음 내에서 최적의 정답의 경우의 대칭차 합은 9입니다.
{갑, 병, 정} vs {갑, 을} → 대칭차: {병, 정, 을} (크기 3)
{갑, 병, 정} vs {갑, 병} → 대칭차: {정} (크기 1)
{갑, 병, 정} vs {을, 정} → 대칭차: {갑, 병, 을} (크기 3)
{갑, 병, 정} vs {을, 병, 정} → 대칭차: {갑, 을} (크기 2)
총합: 3 + 1 + 3 + 2 = 9
핵심은 선지 크기(인원수)의 불균일성과 등장 횟수 제약의 조합입니다.
선지의 크기가 2와 3으로 섞여 있으면, 선지들 간의 '거리', 즉 대칭차를 일정하게 유지하기가 힘들어집니다 2명짜리와 3명짜리 선지는 필연적으로 대칭차가 홀수(1 또는 3)가 나오는 경우가 많습니다. 예를 들어, {갑,을,병}과 {갑,을}처럼 하나가 다른 하나의 부분집합이면 대칭차는 1이 되지만, {갑,을,병}과 {갑,정}처럼 애매하게 겹치면 대칭차는 3({을,병,정})으로 확 늘어납니다.
모든 선지가 2명으로 통일되었을 때는 정답 {갑,을}을 중심으로 모든 오답이 {갑,병}, {갑,정}, {을,병}, {을,정}처럼 일정한 거리(대칭차 2)를 유지하는 아름다운 대칭 구조를 만들 수 있었습니다. 하지만 크기가 다른 선지들이 섞이자 이런 대칭성이 깨지는 것이죠.
게다가 "한 학생 4번 이상 등장 금지"라는 제약 조건이 이 비대칭성을 더욱 심화시켜 가장 효율적인 구조(대칭차가 낮은 구조)를 만들려고 하면 특정 학생(주로 여러 선지에 걸쳐 있는 학생)의 등장 횟수가 4회를 넘어버려서 해당 조합이 폐기됩니다.
경우 2b: 학생 4명 {갑, 을, 병, 정} 중 2명, 3명 혼합 선택 + 한 학생까지는 4번 등장 가능으로 조건 완화.
새로운 규칙 하에서의 최소 대칭차 합은 7입니다.
이는 순수 2명 조합의 8보다, 이전의 2/3명 조합의 9보다 명백히 더 나은 결과입니다.
예시 최적:
정답 선지: {갑, 을, 병} (3명 선지)
오답 선지: {갑, 을}, {갑, 병}, {갑, 정}, {을, 병, 정}
{갑, 을, 병} vs {갑, 을} → 대칭차: {병}. 크기 1.
{갑, 을, 병} vs {갑, 병} → 대칭차: {을}. 크기 1.
{갑, 을, 병} vs {갑, 정} → 대칭차: {을, 병, 정}. 크기 3.
{갑, 을, 병} vs {을, 병, 정} → 대칭차: {갑, 정}. 크기 2.
총합: 1 + 1 + 3 + 2 = 7.
어찌보면 당연한 결과입니다.
최소 대칭차가 6이었던 ㄱㄴㄷ 구성은 ㄱㄴㄷㄹ에서 한 선지를 준 것, 즉 한 선지를 5번 등장시킨 것과 다르지 않기 때문입니다.
다음, 가장 중요한 제약 조건의 충족 여부입니다. 이 5개 선지 전체에서 각 학생이 몇 번 나왔는가?
갑: {갑,을,병}, {갑,을}, {갑,병}, {갑,정}. 총 4회 등장.
을: {갑,을,병}, {갑,을}, {을,병,정}. 총 3회 등장.
병: {갑,을,병}, {갑,병}, {을,병,정}. 총 3회 등장.
정: {갑,정}, {을,병,정}. 총 2회 등장.
기가 막히게도 '갑'만이 정확히 4번 등장하여 "한 명까지는 4번 등장 가능"이라는 새로운 규칙을 완벽하게 적용합니다.
다만 갑이 4번 등장하면 선지 구성 상 좀 티나기에 보통 을, 병, 정에서 4번 등장합니다.
그럼 이 쓰이는 합답형 구성은 어떤 의미를 담고 있을까요?
경우 1. 범용적인 고난도 케이스
최소 대칭차가 가장 적었던 것에서 알 수 있듯 5지선다에서 구현할 수 있는 가장 밸런스 있는 고난도 합답형입니다. 요새 사회탐구에서도 등장하긴 하나 주로 과학탐구나 수학에서 합답형 선지를 4개가 아닌 3개로 이용하는 것은 이 때문입니다. 특히 수학은 아예 여기서도 한 선지를 네 번 사용하여 사실상 나머지 두 선지를 완전히 정확하게 판단하도록 합니다. 탐구에서는 굳이 룰을 깨지 않는 편이나 작년 수능 한국지리 토양 문제에서도 ㄴ을 네 번 등장시켜 나머지 두 선지를 완전히 정확하게 판단하도록 한 경우가 있습니다.
경우 2. 범용적인 사회탐구 케이스
사회탐구 특성 상 특정 명제를 '완전한 정답'이라고 못박기가 어려운 과목도 있습니다. 이 경우에는 소거법이 가능하면서도, 최소 대칭차가 적어 사회탐구에서 범용적으로 사용됩니다.
경우 2a. 사회탐구 선지 하나 몰빵 케이스
최소 대칭차가 경우 2보다 큰데 왜 사용할까요? 이 경우는 경우 2와 달리 정답 선지와 단 하나의 오답 선지 간의 대칭차를 1로 만들 수 있습니다. 쉽게 설명하자면 {갑, 병} vs {갑, 을, 병} 선지의 구조라면 {을} 선지는 소거법이 불가능하게 완전히 정확하게 판단해야 하는 것이죠. 다만, 아무리 을 선지가 어려워도 찍으면 절반의 확률이기에 은근히 정답률이 떨어지지 않는 방식입니다. 그래서 한 선지가 매우 중요한 가치가 있지 않은 한 보통 경우 2의 구성 방식을 사용하는 편입니다.
경우 2b. 아주 가끔 등장하는 케이스? 하나의 선지는 그냥 주고, 사실상의 ㄱㄴㄷ 합답형으로 구성하는 식
최소 대칭차를 경우 2보다 줄이고 경우 1에 근접하게 만들기 위해 그냥 하나의 선지를 줘버립니다. 대신 경우 2a에서 언급했던 찍기로 인한 정답률 뻥튀기가 상쇄되어 정답률이 20%까지 떨어지는 것이 가능해집니다(실제 예시 문제의 정답률이 약 20%였습니다.). 요새는 사회탐구에서도 ㄱㄴㄷ 합답형이 등장하는 추세이기에 이전 교육과정까지 아주 가끔 룰을 깨고 등장했던 구성 방식입니다.
은근 이해하면서 따라가면 재미있는 내용이지만 쓰고 보니 좀 복잡해보이게 된 감이 없지 않아 있습니다.
아무튼, 평가원의 합답형 선지 구성 방식 원칙은 매우 명확한 이유가 존재하며, 따라하기 어려운 퀄리티를 낼 수 있는 비결입니다.
요약:
ㄱㄴㄷ가 ㄱㄴㄷㄹ보다 확실히 어렵고 정답률에 영향을 미친다.
ㄱㄴㄷㄹ 구성 안에서도 ㄱㄴㄷㄹ 중 2선택이 오히려 2, 3 혼합 선택보다 전반적인 밸런스상 변별력이 낫다.
왜냐? ㄱㄴㄷㄹ 2, 3 혼합 선택은 사실상 하나의 선지에 몰빵된 구조니 나머지 선지는 장식인 경우가 많다. 다만 그 선지 하나만큼은 정확한 정오 판단이 필요하기에 진짜 어렵다면 정답률은 40~60%, 아예 낚시라면 20% 언저리에서 놀 가능성이 높다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
나도이미지써줄게 44
잘모를지도,,,,
-
이름이 뭐야? 1
꽈자라자꽈꿍꽈라꽈자칵!자블라자 우부부부엥우엥엔야투에후엥우엥부벵우띠오사스.
-
시발뭐임? 6
왤캐많음 ㅅㅂ 다들안자고뭐함 ㅅㅂ? 아니진짜당황스럽네 한 3명율줄알앆는데;;
-
x 쓰는법 바뀜 원래는 c 선대칭해서 이어붙인 모양으로 썼는데 지금은 뒤집은 s에 작대기 그음
-
이미지적어줄게 68
아는사람얼마없긴하지만……
-
방학되니까 현타 ㅈㄴ 오네 최소 서너살 어린애들이랑.. 내년엔 또 다 군대가고 혼자..
-
망했을때 플랜을 지금 미리 짜두세요 저도 제가 망하는 시나리오는 없었음 애초에...
-
모고가 진짜인듯 모고는 자기 피지컬이 그대로 드러난다고생각함
-
오버워치좀 하다 2
자야겠다
-
새터 때.. 4
혼자 나이 너무 많은 1학년이라 눈치 ㅈㄴ 보였음..
-
고3때 우리학교 남자애들마냥
-
시험볼때 모르는문제가있다는 사실과 그 느낌이 너무 불편하고 싫음 3
다맞히려고하기보단 그느낌이 너무 불쾌해서 더 열심히하게됨 선지가 헷갈린다->ㅇㅋ...
-
하루하루가 너무나 평안함
-
나 이미지좀 2
적어주세요 오랜만에 받아 보고 싶네요
-
누가또 탈릅함? 4
누구요
-
성공과 과정만이 있을뿐
-
새터때 ㅅㅂ 술게임 계속 져서 소주 두 병쯤 빨고 취기 좀 올라오길래 슬슬...
-
프리미엄 너는 마이너스니까 나한테 내고 가고
-
잠이안와 0
허허
-
https://orbi.kr/00071814306 오늘 써봤는데 정말 좋습니다....
-
하기싫은건 최소한만하고 좋아하는것만 하는삶
-
난 친구들이랑 호텔방 잡고 마셨었는디 탁월한 선택이었다고 본다.. 그날 토했거든...
-
게임 캐리했어요 칭찬좀 11
-
대한민국 트럼프 임기 3년반 내내 25% 관세빔 맞으면 경제 어캐될까
-
문제를 푸는거 자체가 더 중요한가요 해설 보고 배워가는게 더 중요한가요 해설을 좀...
-
콜라를 부어서 마시고싶구나.
-
무려 우리학교에서 언매 치는 사람이 나 포함 3명임
-
과탐 1과목 전교 3등이 1등급을 못 맞는 학교가 있다?!? 7
그게 우리 학교다 ㅅㅂ 생명 53명이 맞나
-
그냥 불쾌 100%인데 그래서 낮에 차단 여러명 함
-
나르시스트라고 생각될정도로 날 정말 좋아하면서도 남들이랑 비교할때는 열등감에 미쳐서...
-
수학은...
-
전북도청빌런
-
1109수리 가형 만점받으시고 왜 국어강사하시는지 모르겠음 수학 강사 ㅆㄱㄴ인데
-
왠지 그럼
-
화가난다 화가나 10
벌써 그새끼의 레어 만행이 묻혔어
-
왜 또 아픈 상처에 과탐을 뿌리십니까 해야만함을 알고 하는 과탐은 얼마나 힘이드는가...
-
탈르비할거라 동기가 필요함
-
그냥 맥주 도수 높이는 쓰임새밖에 없어
-
옆에서 F(x) 랑 f(x) 이렇게 적고 있으면 100% 나임 9
아직까지 이렇게 적고있는 사람 한명도 못봄
-
난신라먄블락
-
샤인미 유기할까 생각중…
-
이전 시즌6가 8월중순쯤에 나온다던데 그전에 3주정도 풀 실모 추천 부탁드립니다....
-
가늠이 잘 안되네요
-
나토리너무조아 17
-
우리 학교 1등도 그렇고, 나도 그렇고 학교에 둘보다 많이 하는 애들 차고 넘쳤어도...
-
몬스터 사마시는거 말고 좀더 좋은곳이 없을까..
-
1.컨디션 관리 ㅈㄴ 중요함 수능 1주일전엔 7시간 자고 감기 안걸리게 조심하자...

여기에 선지 순서까지 고려한다면....게다가 231114마냥 ㄱ으로 주면...