질문) 함수를 원소로 하는 집합
게시글 주소: https://orbi.kr/00073759576
이 고등학교 범위에서(평가원, 교육청, 사관학교, 경찰대, 교과서 무관) 나온 적이 있나요? 사설에서는 봤는데.
보신 분 계시면 알려주시고, 출제할 수 없다고 생각하는 분은 근거를 들어주시면 감사하겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이재명 아들 둘다 고대나옴
-
공통왤케못하지 2
11 12 13 14에서 멍때리고 시간 개많이써서 미적 ㅈㄴ 스릴 넘치게 풂
-
올해 3모는 그냥 비교할 대상 자체가 없으니까 패스하고 5모(4모)끼리 비교해봤을...
-
제가 하고 싶은거 하면서 쉬는게 답인가요? 사람마다 다르겠지만 번아웃 극복하신분들은...
-
배부르당 10
쉐이크쉑 버거 두 개랑 핫도그랑 감튀랑 밀크쉐이크 먹구왓슴...
-
딴거 다 필요없고 하나만 물어보자 "이제 입학하는/또는 갓 입학한 의대 재학생이...
-
네
-
높3~낮2 4규+엔티켓 하고 왔는데 좀 어려운데 이게 맞아요?
-
설대 4
영어 2만 맞아도 거의 타격이 없나요? 신기하네...근데 이렇다고 유기하면 엿될거같음
-
서울대 포기하고 중앙대 가서 저러는듯 학벌에 열등감이 있을 줄이야
-
정작 기업들 입장에선 인재가 안와서 못내려간다고 그럼 그리고 정부에서도 여러시도를...
-
며칠 국어만 해서 216도식 좀 익숙해졌나 싶었는데 영어도 범주화 돼버리는걸...
-
작년 이감 1
작년 이감 시험지랑 간쓸개 한회차분 받고 못풀어서 남아있는데 지금 풀어도 도움이...
걍 내버릴까 점을 원소로 하는 집합도 잘만 나오는데
문제가 어떤지에 따라 다를거같아요
1. {f(x), g(x)}
2. 다음 조건을 만족시키는 모든 다항식들의 집합 P
3. 정의역과 치역이 실수 전체의 집합인 연속함수들의 집합 C
어디까지 괜찮다고 보시나요?
저는 1이긴 합니다만 2,3도 가능하면 내고 싶네요
2번은 사실 지금까지 평가원에서 "모든 f(a)의 합" "f(a)의 최대/최솟값"이라고 준 문제랑 결이 크게 다르지 않다고 생각해요
3번은.. 좀 문제가 되겠죠 아무래도