28번 과조건에 대하여
게시글 주소: https://orbi.kr/00073349556

f(x)의 미분가능성만 이용해서 푼 풀이인데, 이 풀이가 논리적 결함 없이 성립하려면 p(x)를 (x-k)³으로 나눈 식의 x→k일 때 극한이 존재함을 교과과정 내에서 보일 수 있어야 하고, 이걸 근거로 y=ax+b가 변곡접선임을 설명할 수 있어야 할 것 같습니다.
제 능력으로는 일단 저 극한식을 계산하는 게 불가능한 것 같고 따라서 이 풀이가 평가원이 의도한 풀이가 아니고, 교육과정 내에선 합리적으로 설명할 수 없는 풀이인 것 같네요.
그렇다면 f(x)를 두 번 미분하는 풀이가 교육과정에 부합하는 풀이이므로 과조건이 아닌 것 같다가 제 의견입니다.
(현재 수식을 타이핑할 수 없어서 직접 손으로 쓴 점 양해 부탁드립니다..)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
#07년생#08년생#독학생 오르비의 주인이 될 기회 37 36
-
오르비가 처음인데 4 0
머부터 해야하나요
-
설맞이풀고 스1 0 0
할건데 ㄱㅊ?
-
오르비 원래 이러나요?;; 6 1
진짜 무례하네
-
기상 0 0
다시잘거임
-
시대인재 박종민쌤 0 0
작수 미적 22, 30 못풀어서 92인데요 사정이 있어서 본격적인 재수는 2월 말에...
-
수시든,정시든,편입이든 존잘존예이면 플러스고 존못돼지면 마이너스인가여
-
아메추라는 말 디게 어색하다 3 0
저메추나 점메추는 익숙한데 아메추는 놰케 메추리알같지
-
이미 대학 붙은게 있으면 접수 못하나
-
나를 위한 요리에서까지 조림을 하고 싶지 않았습니다
-
우치라가우와사노우마무스메 0 0
~~
-
추가모집 커뮤 싹 뒤져봤습니다 3 3
정시 3떨... 불안한 마음에 이틀 잠 못자고 정말 모든 커뮤 오르비 수만휘 포만한...
-
다들 안녕 1 0
-
새르비 무리무리 4 0
-
kbs가 벌써나왔음? 1 0
원래 한 4월쯤 나오지 않았나
-
Kbs 0 0
현진건의 고향 나왔어여 다들 한 번 보셔여 근데 그냥 뭔가 웃기네 ㅋㅋㅋ
-
얼버기 2 0
목마름뇨
-
설맞이 배포 국어 교재 완성! 1 0
낼 디자인 다 해서 올릴듯
-
와 얘 뭐지 3 0
뭔데 날 막아서는거지
-
일어나세요 3 0
눈을 떠 웨이크업
-
꽹과리 어디 없나 0 0
여기 사람들 다 깨워야되는데
-
연천 3.0 지진 ㄷㄷ 0 0
추가령 구조곡 ㄹㅇ 무섭네..
-
우걱우걱
-
저게뭐람
-
얼버기 2 0
인척하는 안자는사람
-
27수능이 라스트댄스가맞음 0 0
왜냐면 통사하기싫음
-
나도 대학 다니고싶다 0 0
새터 재밌어 보이던데
-
설대 가고싶다가도 2 0
고연전 영상 보면 고뽕 너무 참
-
생활패턴 이거 어떻게 고치지 0 0
사실 고칠 생각없긴함
-
배가 너무 고프네 0 0
꼬르륵거림
-
자 지축을 0 0
박차고
-
28수능 준비가 맞나 0 0
걍 다 포기하고 노가다 가야하나..
-
편의점 간식 골라죠 2 0
치킨vs샌드위치 둘 다 먹기엔 돈 없음,,,ㅠ
-
얼버기 3 1
사실 잠 안잤어!
-
ㄷㄷ
-
26인데 도전하는건 에바죠? 1 1
안녕하세요. 이른 새벽에 고민글 하나 씁니다 작년 수능성적은 언확영세사사문 93...
-
노란색 전공필수 이론 주황색 전공필수 실습 청록색 필수교양 전선 다 제끼고...
-
어 형이야 3 0
제주도 가는 중이다 제주도에서 보자 3일동안 똥글이라도 안 쓰면 뒤진 걸로 알아라 ㅋㅋㅋ
-
물리 선택자들은 2 0
기껏 공부해놓고 샤워로 물리력 씻어낼거면 물리공부 왜 하는거임
-
폭스 5 0
폭스 왓다
-
더워 1 0
더더더더더우ㅗ
-
메인 보법이 다르네 3 0
아재능이부러워
-
오수엔 이런뜻이 9 0
-
Jalja 6 1
Gudnait
-
4시쯤되니까 ㄹㅇ 텅텅이네 4 0
우히히
-
엄마 올림픽 보고 있네... 3 0
그렇게 재밌나
-
통사 통과 표점 체계의 문제점 3 0
소수점 배점이긴하나 표준점수로 산출되는 최종 과정에서 여전히 정수로 반올림하는...
-
형 잔다 1 0
애기 잘게요
-
진짜오늘은너무레전드엿다 3 0
주량 맥주 두캔인 내가 소주 네병에 샴페인 한병 데킬라 한병 칵테일 세잔을 다 마셨다고?
-
탕탕후루후루 4 0
탕탕탕후루루루루
-
옛날에 교수님이 그랬었는데.. 15 2
교수끼리 대회할 때 정시 왜 뽑아줘야 되는지 모르겠다고 말 하는 교수님이 있었다고 했음.. 흠
동의합니다. 교과과정 내로 보일순 있겠지만, 변곡접선인걸 바로 눈치채고 푸는걸 의도한게 아니라 이계도함수까지 미분해보고 관찰하면서 조건 얻어내는 역량을 평가한 것 같아요.

설령 저 극한식이 교과과정 내에서 계산이 되더라도 의도했다고 하기엔 무리가 있어 보이네요출제방향 오피셜
잘안보이나
"합성함수의 미분법과 이계도함수를 활용하여~"

오 이런 게 있었구만과조건이라고 욕할게 아니라 오히려 그 표지로 인해 풀이 방향을 나름 제시해줬다는 의미에서 더 좋은 것 같습니다.
g-¹(x)가 x=0에서 x³만큼의 정도로 무한대로 발산하고 있으니 x³으로 매꿔야 해서 변곡점에서 만나야 한다는 건가요
그러면 상수로 수렴하는거죠?
p(x)가 다항함수가 아니라서 그런 언어적인 표현으로 상황을 설명하기엔 비약이 있습니다. 최대한 비약을 막아보고자 27번 밑에 극한식을 유도하였고 'p(x)가 함숫값이 0이 되는 모든 점에서 삼중근을 가져야 한다'는 점이 y=ax+b가 변곡접선이 되어야 함을 완벽하게는 아니지만 어느정도 설명해줄 수 있다고 받아들여진다면 그대로 답을 내도 무방할 것 같아요
그리고 f(x)가 실수 전체의 집합에서 미분계수를 가지므로 당연히 한 점을 특정해도 미분계수가 존재합니다. 따라서 아래의 극한식도 당연히 수렴해야 합니다.
이해햌ㅅ습니다 27번 밑에있는 식을 못봤네유
일차근이나 이차근을 가지면 발산하잖아요
현장에서 파악하려면 어떤식으로 생각을 해야할까요?
처음 문제를 보면 전혀 보이지 않을 것 같습니다
나조건에 있는 조건들이 등식을 뽑아낼 수 있는 조건들이 아닌데 항등식만 달랑 줘놓고 등식을 2개 뽑아내라고 강요하고 있으니 '어느 지점에서 등식을 만들어낼 수 있을까?'가 사고과정의 시작이었습니다.
x⁵+x³의 역함수가 x=0에서 미분계수가 발산한다는 걸 상식으로 알고 있었고, 덕분에 f(x)가 실수 전체에서 미분가능하다는 조건과 결부하면 p(x)=0인 x에 대하여 미분계수와 관련된 정보가 등식으로 도출될 거라는 자연스러운 사고흐름 속에서 풀이를 전개했던 것 같아요
미분계수의 발산과 관련한 사고과정은 190621을 통해 익힌 바 있습니다.
문제에 주어진 상황을 관찰하고 귀납적으로 발견해서 답을 내는 느낌이 아니라 상술한 사고과정을 통해 '등식을 만들어내야겠다'라는 목표의식을 가지고 문제를 대하다보니 비교적 쉽게 볼 수 있었던 것 같습니다.
아 f(x)가 미분가능하니까 조건 활용을 위해 f(x)에 대한 식으로 반사적으로 정리하고 그과정에서 역함수를 쓴건데
X⁵+x³의 역함수가 0에서 발산한다는게 0.1초만에 보여서 p(x)가 0이 되는 지점을 찾은려고 한거군요
사실 처음엔 항등식을 바로 f(x)에 대해서 정리하여 보려고 하진 않았고 문제에 주어진 그대로 파악해보려고 대칭성이랑 치역 위주로 관찰해봤는데 딱히 보이는 게 없더라고요 ㅋㅋ
그래서 f(x)에 대해서 정리해보니 그땐 x⁵+x³의 역함수의 미분계수가 x=0에서 발산하는 게 바로 보였습니다. 그래서 p(x)=0에 주목한 게 맞고요
그 이후에 변곡접선이라는걸 찾은게 더 굉장한데요
저라면 님처럼 했어도 발산이랑 p(x)의 x인수 개수랑 엮지 못했을 것 같네요 ㅋㅋ