수학 갑자기 든 생각
게시글 주소: https://orbi.kr/00073240775

f(x)가 함수가 아니다를 더 엄밀하게 설명할수 있을까?
따지고 보면 저 "집합의 원소들"을 통째로 하나의 결과값 이라고 볼수 있는거 아님?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
D-168 수능 공부 기록 2 1
오늘치 공부
-
영어 진짜 어떡ㄱ하죠 2 1
미치겠네
-
메가스터디 교재 반품 질문 0 1
교재 반품 완료되었다고 하는데 메가캐쉬는 언제 들어오나요 ㅠㅠ 24시간 지났는데 아직 안 들어와서
-
저매추해주면 18 0
살려드림
-
얌전히 기다리기 82일차 3 0
진급택배 택꾸중 •••
-
2년 전 / 현재인데 이 정도면 많이 발전한 거임요? 10 2
2년 전에 푼 기출 오늘 푼 실모 글씨체랑 풀이 방식 두 가지 다 고려해서
-
지구 현강 질문 0 0
현역이고 수시 정시 다 챙기고 있고 박선 현강 듣고 있어요 근데 수행하다 보니까...
-
사회문화 개념 일주일 컷 0 0
수특으로 내용 읽어보고, 밑에 문제 풀어보기 반복함 인상깊었던 부분: 1. 뭐만하면...
-
국어 휴강 한달동안 머하지 1 0
브크들을까 혼자 기출 팔까 고민되넴
-
그냥 학교공부 던질까 0 0
하시발
-
07의킬캠2회차 3 1
긴장감 대비 80분 28,30틀 1회차와 마찬가지로 공통킬러는 많이 쉬움 28은...
-
미쿠짤 16 0
뭔말임
저 위의 식 일반적으로는 함수가 아니잖음 하지만 관점을 다르게 해서 원도 하나에 x에 대해 2개의 y가 나와서 함수가 아닌데 잘만하면 함수라고 우길수 있지 않을까 라는 생각이 들음
저 위의 식이 일반적으로 함수 맞지 않음?
ㄴㄴ 하나의 x 에대해 값이 1,2,3 나와서 함수 아님
그럼 f(x)의 정의역은 머임
그냥 실수 전채
생각해보니깐 그럿내..
분포를 얘기하고 싶은가요
그게 뭔가요 알려주십시오
디랙 델타 함수 같은거는 이름은 함수지만 실제로는 함수가 아니라 분포 distribution이라고 정의함니다 저는 수학과가 아니라서 그냥 함수처럼 써요

오..더 알아봐야겠다