[칼럼] 타원만 두드리는게 아닙니다
게시글 주소: https://orbi.kr/00073231869
공통의 시대가 도래하고 중요성이 급증한 '나형' 시절 문제들
기본적으로 문과생들을 상대로 출제한 문제라 난이도가 미쳐돌진 않지만
그래도 기본적으로 30번인만큼 못 먹을 문제들은 하나도 없습니다
그 중 하나인 20년 9월 나형 30번
허나 해설지를 보면
솔직히 말해서 이런 류의 해설은 다항함수를 공부하는데 있어
별 도움을 주지 않는
'자 나 문제 풀었다' 식의 해설인데
EBS에서 문과 학생들이 알아들을 수 있도록
맞춤형 눈높이 해설을 제공했다고 생각하고 싶습니다
그렇다면 저 문제는 어떻게 처리해야 할 것인가
일단 x=-1, 0, 1, 2에 대해서 함숫값이 등차수열을 이룬다는 것을 통해
하나의 직선을 떠올릴 수 있고
그렇다면 그 다음은 자연스레 원함수에서 직선을 빼고 싶어지는데
문제는 풀이의 핵심이 되는 조건인 (-1, f(-1))에서의 접선과 (2, f(2))에서의 접선의 교점이
f에서 직선을 뺀 상태에서도 그대로일까?
라는 의문이 든다는 것입니다
여기서 잠시 이전의 타원 두드려서 펴기를 생각해보면
우리가 문제에 어떤 조작을 가할 때
상황을 쉽게 만드는 조작과 어렵게 만드는 조작
조건의 핵심에 영향을 주는 조작과 주지 않는 조작
이 중 많은 사람들이 문제의 상황을 쉽게 만드는 조작에만 관심을 두는데
그런 조작이라 하더라도 해당 조작이 조건의 핵심에 영향을 준다면
조건이 어떻게 바뀌었는지 따져봐야 하고, 그로 인해 조건을 못 써먹을 상황이라면 결국 의미 없는 조작이 됩니다
타원을 두드려서 펴는 조작 역시
'원의 접선으로 만들기'라는 문제의 상황을 쉽게 만드는 조작이
'P는 접점'이라는 핵심 조건에 영향을 주지 않기 때문에
비로소 유의미한 조작이 되는 것입니다
그럼 문제로 돌아가서 한 점에서 만나는 두 직선의 방정식에 같은 직선을 빼면 어떤 일이 일어나느냐
이렇게 두 직선에 뭘 빼거나 더함에 무관하게 교점의 x 좌표는 유지됨을 알 수 있습니다
그렇다면 저 문제에서도 교점의 x 좌표인 k는 그대로 유지가 되겠죠?
이렇게 두 접선을 망치로 두들겨도 접점의 x 좌표가 변하지 않는다는 것과
사차함수의 대칭성을 이용하면 k를 뚝딱 정리할 수 있습니다
사실 빼기함수의 본질 역시 이와 같죠
단순히 빼기함수를 배웠다고 끝이 아니라 빼서 얻는 이점이 무엇인지 어째서 빼도 됐는지
생각을 한다면 다항함수를 좀 더 쉽게 다룰 수 있습니다
이제 마무리합시다
결론)
망치는
공통에서도
먹힌다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
공융녕생 으로 발음돼서 한번에 말하려면 힘듦 ㅋㅋㅋㅋㅋ 비염있으신 분들은 거의 안돨듯
-
생노베가 상식용으로 경제 공부하려는데 책 추천좀
-
강사하지 말까....
-
너무 힘듦..
-
집 형편 생각하면 배우고싶은거보단 취업이 우선이겠죠,.? 6
간호 건축 도시공 중에서 고민중인데 건축이랑 도시공이 설계때문에 재료비도많이 나가고...
-
2018 개정 교과 과정 적용 이후 직접적인 연도 확인 문항의 비중은 현저히...
-
교보문고갔는데 나만 알고있던 일반인기준개씨발역겨운음지물들 죄다 한국에 수출되서...
-
5모 푸러볼까 7
투는 아직 실전경험이 너무 없음
-
고3 3월 모의고사 기준=>지금 문제 풀어봐도 됨 5등급(11번 이상을 맞추지...
-
대학축제 영상 보는데 장원영 잡히면 다 소리지르네 ㅋㅋㅋㅋㅋㅋ 물론 내얼굴 봐도...
-
그저 완벽한 대칭
-
되도인될 소리를 지르고 일단 판을 벌린 다음에 능력부족으로 유기함
-
일단 두팀다 있긴함
-
논술학원 추천 0
님들 목동근처애 논술학원 추천가능한가요 수리하고 약술 논술 원서넣을려하는대
-
한국사 감점 0
제가 한국사 공부안해도 상관 없을줄 알고있었는데 원하는대학이 5등급부터 1점씩...
-
알고리즘은 신이야
-
노베이스에서 재수해서 현재 단국다 재학중이고 학벌에대한 고민이 크네요.. 이미2학년...
-
켈황 ㄷㄷ 0
오늘 개잘함
-
기차지나간당 8
꿈나라행
캬
망치햄
사실 두들길 문제가 좀 더 있긴한데…
아우 개운해
깡깡
221108도 같이
티원으로봤네
깡!
망치로 두들겨~
직선을 더하고 빼도
x좌표, 높이의 차이 등이 변하지 않는다는 것
아주 중요한 부분이죠
빼기함수를 왜 빼는지 생각을 해야죠 ㄹㅇ
티원으로봤네
티원 칼럼인줄알고 들어왔는데..
진짜쾅쾅쾅쾅쾅두드리니까풀리네
망치질 두 번이면 k가 나온다니까?
ㅋㅋㅋㅋㅋㅋㅋ 이거 대학때 구면거울방정식 배웠던 원리랑 비슷한거같네 횡배율 축소 확대 어쩌고..
잘배워갑니다
대학때 이상한 것만 알려줘서 직접 찾은 ㅜ
저도 외워서 시험본거라 원리도 잘모름 ㅋㅋ 대학교 3학년때부턴 거의 외워서시험본듯 ㅋㅋ

뭔개소리인지이해못했으면개추...진짜나밖에없는건아니겠지?
그…러니까 저걸 빼기함수로 보면 (x+1)x(x-1)(x-2)라는 x=1/2에 대칭인 진짜 이쁜 함수가 되는데 내가 빼기함수를 하면 접선의 교점이 어떻게 될까?라는 고찰을 진행해보면 x좌표는 변하지 않게 되어서 k의 값을 굉장히 손쉽게 얻을 수 있다는 겁니다
목수 수학 메타인가요? ㅋㅋㅋㅋ 잘 봤습니다.
목수의 망치와 수학강사의 망치가 동등한 가치를 인정 받을 수 있기를
볼때마다 신기하네요 이건
과찬이십니다