지인선엔제 5회 이중극한 문제
게시글 주소: https://orbi.kr/00073157215

이중극한은
예를 들어 우극한으로 정의된 함수를 그려서 거기서의 좌극한을 따지는 이런식이라 했는데
이런건 어떻게 해야하나요? 기울기가 1+로 가는 일차에,,
답지도 여기에 대해 설명이 좀 부족하던데
일단 옛날에 과외쌤한테 배운 그냥 제일 마지막 바깥쪽 극한 따른다 적용해서 오답하긴했는데
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
마찬가지로 f(x+)꼴로 봐주어도 됩니다
그냥 제일 바깥쪽 우/좌 따지면 됨요 (근데 -있을 땐 좌우 바뀌는 거 주의)
차피 우/좌 극으로 정의된 함수를 떠올려 보면 다른데선 모두 원본함수랑 똑같은데, 불연속인데만 ○● 이 달라질 수도 있는데
어차피 이중극한은 그 함수의 또 극한이니깐 걍 제일 나중극한 따지면 됨. 마이너스 붙은 거는 주의하고
이해가 되셨을 지는 모르겠습니다. 뭔가 저는 정확히 알고 있기는 한데, 남한테 엄밀한 과정을 통해 설명하려니 어렵긴 하네요..
혹시 더프 가지고 계시다면 4덮 15번 추천드립니다.
혹시 f(-x+t)도 설명가능하실까요 ..?
조금 더 말로 풀어서 설명하면
극한의 과정값과 극한의 결괏값을 구분해야 합니다.
(lim x->1-) 의 값은 당연히 1이죠.
하지만, x->1- 일 때, (|x-1|/x-1)이 -1인 과정을 조금만 이해하시면, 저 값은 사실 1보다 아주 작은 값을 의미한다고 볼 수 있어요.
따라서 이중극한에서는, 저 아주 작은 값 근처도 1 자체가 아니라 1보다 아주 작은 값을 의미해요
내신때 극한 관련해서 깊이 배워야만 오개념 없이 제대로 알 수 있기에, 이중극한에서는 바깥 거를 따라간다?(사실 처음 들어봄)이라거나 하지 않으셨으면 좋겠어요.
사실 수능엔 안 나올 법해서 걱정은 안 하셔도 되지만, 이번 6모에 극한 관련해서 미분계수의 심도있는 정의를 통해 출제한 바 있기에(이 내용도 단순히 우극한이 존재하지 않는다고 결론내리면 큰 논리적 오류가 생깁니다.)
과정 자체를 이해하려고 조금만 노력하시면 큰 문제는 없을 겁니다. 이중 극한 말이 그렇지 사실 엄청 단순한 거잖아요? 화이팅입니다.