-
기습질받 1
선넘질받
-
ㅈ르투아 사모라상 컷
-
연애 ㅎㅎ 5
할틈이없는인생 ㅅㅂ
-
작년9평때느꼈음
-
안 자 3
씨발
-
높2에서 낮1 진동하는 쪽인데 준킬러랑 킬러n제 같은거 풀때 어느정도 시간으로...
-
초록노프사
-
맞음 인생도망한거맞고 만만한거도맞음..
-
이런것도 그냥 뭔가 손으로 쓰려고 하면 안보이는디 걍 머리로 생각하다보면 닮음이라...
-
수학 실모 추천 1
수학 실모 추천 해주세요
-
ㅅㅂ 그게 말이되냐고
-
53점인가 받아봄
-
6모 대비 히든카이스 모의고사 2회분 출시 후 광클이벤 + 칸타타 vs 세계 칸타타vs시대갤로 홍보
-
어케 풀어여
-
하는 식으로 엮였는데 딱히 기분이 안 나쁘면 호감일까요 …아니야그럴리가없는데
-
뭘보고 팔해주시는걸까
-
과탐 가산점이랑 미적분/기하 가산점 없는 학교 대충 어디어디 있는지 알려주시면 감사하겠습니다!
-
외대 32111 6
32111 언매미적생윤윤사 낮3 낮2 사탐 둘다 높1인데 외대 LD 됩니까아 ㅠㅠ
-
작년에 이말 ㅈㄴ읏겼음
-
전 4규공통답컨하고 미적쎈발점 이해안되도넘어가기 하고 있었음ㅋㅋ
-
올해대학갈사람들은당연히빼고계산하는거지.. 난일단못감
-
ㅈㄱㄴ
-
렌즈끼고 알 없는 안경 끼니까 친구가 알 없는거 바로 알아보던데 ㅋㅋㅋ 티나나
-
오르비최저학력은나구나 21
ㄹㅇ..
-
멀 어떡해 그냥 발뺌하면되는거지
-
흠
-
다시금 떠올리게되네
-
우울하다 1
지금 건대 높공 재학 중인데 반수 관련해서 부모님이랑 의견이 안 맞았어서......
-
사문 자작 3
-
진사람 삭발하고 인증하기 ㅇㅇ
-
혀 닦다가 토함 11
ㅜㅜ
-
나 언제 죽음? 4
하 힘들어 ㅠ
-
1회 62점 2회 86점
-
어림도 없지 시발
-
윤사 기출 1
윤리와 사상 마더텅은 끝냈는데 다음으로 임정환쌤의 임팩트를 할까요? 아니면 현돌의 기시감을 할까요?
-
으흐흐
-
난 내일 피파만 팔까 14
팀 갖다 팔까
-
공부용으로 기출지문분석 / 해설집기능만들어봤음요 여기서 더 상세하게 모르는거도...
-
진짜 송도 기숙사에서 으챠으챠 팟팟 쭈왑쭈왑 하나요 8
절실합니다 답변 부탁드려요
-
기철햄 들으면 개씹좆노베여도 3등급까지 떠먹여주는데 ㄹㅇ.. 홍보를 안해서 그런건가
-
잘자 7
ㅎㅎ
-
근데안되는거암
-
님드라! 14
한 며칠정도 과탐만 해보는거 어때! 이거 감 좀 잡고싶어... 맨날 개념도 까먹고..
-
올해 초에 오르비 뒤집었다가 탈릅한사람 아닌가
-
그낭 하루종일 놀아버렸어 얼불춤 좀만 더하다 자야지
-
n제 여러권 추천해주시면 감사하겠습니다..
(1) 일대일 대응의 정의: 함수 f: X → Y가 일대일 함수이면서 전사 함수일 때, 즉 X의 모든 원소 x에 대해 Y의 원소 y가 유일하게 대응되고, Y의 모든 원소 y에 대해 X의 원소 x가 적어도 하나 존재할 때, 함수 f를 일대일 대응이라고 한다.
(2) 함수 f(x)가 x=a에서 연속일 조건: 함수 f(x)가 x=a에서 정의되어 있고, 극한값 lim x→a f(x)가 존재하며, 그 극한값이 f(a)와 같을 때, 즉 lim x→a f(x) = f(a)일 때 함수 f(x)는 x=a에서 연속이다.
(3) 명제의 참 거짓 판단: 주어진 명제 "f가 일대일 대응이면 f는 연속함수이다"는 거짓이다.
반례:
다음과 같이 정의된 함수 f를 고려한다.
f(x) =
x (x < 0)x + 1 (x ≥ 0)
이 함수는 실수 전체의 집합에서 실수 전체의 집합으로의 일대일 대응이지만, x = 0에서 불연속이다. 따라서 주어진 명제는 거짓이다.
아니 속도 말되나 이거 ㅋㅋ
◕‿◕
지피티 아웃
지피티특 : 맨날 반례로 이상한거 들고옴

이거이거 gpt썼지gpt는 아님
애초에 반례가 일대일대응함수가 아님
그냥 삼성 AI 검색임
성의없어서 1000덕만 드림
ㅠㅠ
◕‿◕
x (x<-1,x>1), -x(-1<=x<=1) 이 반례 아닌가요
치역이슈때매
아 몰라몰라 그냥 덕코 내놔
좋아, 고등학교 수학 교과서 범위 안에서 서술하면 다음과 같이 정리할 수 있어:
---
(1) 일대일 대응의 정의를 서술하시오.
서술:
두 집합 , 사이의 함수 가 일대일 대응이 되기 위해서는 다음 두 조건을 모두 만족해야 한다.
일대일: 서로 다른 원소가 서로 다른 원소에 대응한다. 즉,
전사: 의 모든 원소가 의 어떤 원소와 대응된다. 즉,
의 모든 원소가 의 대응값이 된다.
이러한 함수 를 일대일 대응 함수 또는 전단사 함수라고 한다.
---
(2) 함수 f(x)가 에서 연속일 조건을 서술하시오.
서술:
함수 f(x)가 에서 연속이 되기 위한 조건은 다음 세 가지를 모두 만족해야 한다.
1. f(a)가 정의되어 있어야 한다.
2. \lim_{x \to a} f(x)이 존재해야 한다.
3. \lim_{x \to a} f(x) = f(a)여야 한다.
이 세 조건을 모두 만족할 때, f(x)는 에서 연속이라고 한다.
---
(3) 명제 판단: “가 일대일 대응이면 는 연속함수이다.”
고등학교 수준에서의 판단:
거짓이다.
반례:
함수 f: \mathbb{R} \rightarrow \mathbb{R}를
f(x) = \begin{cases}
x, & x \ne 0 \\
1, & x = 0
\end{cases}
왜냐하면,
\lim_{x \to 0} f(x) = 0 \ne f(0) = 1
따라서 주어진 명제는 거짓이다.
---
이렇게 정리하면 교과서 수준에서 충분한 서술이 된다고 볼 수 있어.
아오 직접 써오라고요 ㅋㅋㅋㅋ
우웅 써왔는디
1. 일대일 함수인데 치역과 공역이 일치
2. a에서 좌극한과 우극한과 함숫값 일치
3. 거짓, 반례)
f(x) = x (|x|>1)
-x (|x|<=1)
AI 개요
(1) 일대일 대응의 정의: 함수 f: X → Y에서, X의 서로 다른 임의의 두 원소 x1, x2에 대해 f(x1) ≠ f(x2)이고, Y의 임의의 원소 y에 대해 f(x) = y를 만족하는 X의 원소 x가 적어도 하나 존재할 때, 함수 f를 X에서 Y로의 일대일 대응이라고 한다.
(2) 함수 f(x)가 x=a에서 연속일 조건:
lim x→a f(x)가 존재해야 한다.
f(a)가 정의되어야 한다.
lim x→a f(x) = f(a)여야 한다.
(3) 명제의 참 거짓 판단:
명제:
"실수 전체의 집합에서 실수 전체의 집합으로의 함수 f에 대하여, f가 일대일 대응이면 f는 연속함수이다."
판단:
거짓
반례:
코드
f(x) = { x (x<0)
{ x+1 (x>=0)
이 함수는 일대일 대응이지만 x=0에서 불연속이다. 따라서 주어진 명제는 거짓이다.
대충
함숫값 다를때 x값 다르면서 치역=공역인거
함수의 좌극한 우극한 함숫값이 존재하고 싹다 같을때
반례는 위에다 적었으니 생략
이거 연속인건 원래 엡실론델타 써야하는데 엡실론델타 꼴보기도 싫으니 안쓸거임 ㅅㄱ
1.일대일 함수이자 치역과 공역이 동일하면 일대일 대응이라 한다
2. x =a 에서 lim x ->a f(x) = f(a) 라면 fx 는 x=a 에서 연속이라고 한다
3. 참이아니다, 반례: f = 1/x (x 가 0아닐경우) 0(x=0)
3. 해당함수는 일대일대응이 모든 실수에사 성립하지만 연속함수가 아니다

좋습니다 ㅎㅎ감사합니다~