-
영역별로 몇이였는지는 기억 안나는데 암튼 종합은 엄청 낮더라 난 내가 똑똑한 줄...
-
기본적으로 수능은 결론만 딱 외우는 애들 걸러내는 시험인듯 25
그 결론까지 도달하는 과정을 정확히 알고있냐를 묻는 시험인것 같음 구조독해,...
-
서킷x 전회차 or 4규 시즌1, 미적 둘중에 하나 고르래서...기출 끝나면 푸려구요
-
적고가주세요
-
님드라! 14
한 며칠정도 과탐만 해보는거 어때! 이거 감 좀 잡고싶어... 맨날 개념도 까먹고..
-
중딩여르비 질문해도 되ㄹ까요 ? ♡ཾֻ. ᩙ.?ꛒྀི 22
상위권이 극상위권이 되려면 어떤 걸 해야 할까요 n제들 풀고 실모 보고 ㅎㅏ고 있긴...
-
본인 고2고 학교에서 현재 1학기 수1, 2학기 수2 하고있고 1년 과정으로 2학년...
-
무조건 이과로 중앙대 이상 가는게 목표면 사2보다눈 사1 과1이 낫죠? 민영쌤...
-
물리 화학 하지말라고 칼들고 협박하나
-
중경외시뱃 달고 저능아인척 하고 싶다..
-
스트레스 너무받는다 15
속이답답하다
-
카톡프사보니까 여캠됐음 ㅅㅂ ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ 와 사람일은 모르는구나..
-
오르비 잘자요 6
저는 2만
-
혀 닦다가 토함 11
ㅜㅜ
-
형들 6월까지 확통 1,2단원만 빡시게 해도됨? 의견좀 6
첨하는중이라 3단원 쉽다길래 6평전까지 1,2단원에 집중해서 학습하는게 어떨까?
-
수학 풀이에 관하여 12
자기 맞는 풀이대로 푸세요 다만, 남(주변이든, 강사, 교사 등 선생님이든..)...
-
슬프네 작품이 ㅠㅠ
-
사문 개념 전체 5시간 컷 이게 섹스가 아니면 뭐임 윤씨는 40시간 가까이 하는걸...
-
닉변완. 15
닉네임을압축한다
-
난 국어
(1) 일대일 대응의 정의: 함수 f: X → Y가 일대일 함수이면서 전사 함수일 때, 즉 X의 모든 원소 x에 대해 Y의 원소 y가 유일하게 대응되고, Y의 모든 원소 y에 대해 X의 원소 x가 적어도 하나 존재할 때, 함수 f를 일대일 대응이라고 한다.
(2) 함수 f(x)가 x=a에서 연속일 조건: 함수 f(x)가 x=a에서 정의되어 있고, 극한값 lim x→a f(x)가 존재하며, 그 극한값이 f(a)와 같을 때, 즉 lim x→a f(x) = f(a)일 때 함수 f(x)는 x=a에서 연속이다.
(3) 명제의 참 거짓 판단: 주어진 명제 "f가 일대일 대응이면 f는 연속함수이다"는 거짓이다.
반례:
다음과 같이 정의된 함수 f를 고려한다.
f(x) =
x (x < 0)x + 1 (x ≥ 0)
이 함수는 실수 전체의 집합에서 실수 전체의 집합으로의 일대일 대응이지만, x = 0에서 불연속이다. 따라서 주어진 명제는 거짓이다.
아니 속도 말되나 이거 ㅋㅋ
◕‿◕
지피티 아웃
지피티특 : 맨날 반례로 이상한거 들고옴

이거이거 gpt썼지gpt는 아님
애초에 반례가 일대일대응함수가 아님
그냥 삼성 AI 검색임
성의없어서 1000덕만 드림
ㅠㅠ
◕‿◕
x (x<-1,x>1), -x(-1<=x<=1) 이 반례 아닌가요
치역이슈때매
아 몰라몰라 그냥 덕코 내놔
좋아, 고등학교 수학 교과서 범위 안에서 서술하면 다음과 같이 정리할 수 있어:
---
(1) 일대일 대응의 정의를 서술하시오.
서술:
두 집합 , 사이의 함수 가 일대일 대응이 되기 위해서는 다음 두 조건을 모두 만족해야 한다.
일대일: 서로 다른 원소가 서로 다른 원소에 대응한다. 즉,
전사: 의 모든 원소가 의 어떤 원소와 대응된다. 즉,
의 모든 원소가 의 대응값이 된다.
이러한 함수 를 일대일 대응 함수 또는 전단사 함수라고 한다.
---
(2) 함수 f(x)가 에서 연속일 조건을 서술하시오.
서술:
함수 f(x)가 에서 연속이 되기 위한 조건은 다음 세 가지를 모두 만족해야 한다.
1. f(a)가 정의되어 있어야 한다.
2. \lim_{x \to a} f(x)이 존재해야 한다.
3. \lim_{x \to a} f(x) = f(a)여야 한다.
이 세 조건을 모두 만족할 때, f(x)는 에서 연속이라고 한다.
---
(3) 명제 판단: “가 일대일 대응이면 는 연속함수이다.”
고등학교 수준에서의 판단:
거짓이다.
반례:
함수 f: \mathbb{R} \rightarrow \mathbb{R}를
f(x) = \begin{cases}
x, & x \ne 0 \\
1, & x = 0
\end{cases}
왜냐하면,
\lim_{x \to 0} f(x) = 0 \ne f(0) = 1
따라서 주어진 명제는 거짓이다.
---
이렇게 정리하면 교과서 수준에서 충분한 서술이 된다고 볼 수 있어.
아오 직접 써오라고요 ㅋㅋㅋㅋ
우웅 써왔는디
1. 일대일 함수인데 치역과 공역이 일치
2. a에서 좌극한과 우극한과 함숫값 일치
3. 거짓, 반례)
f(x) = x (|x|>1)
-x (|x|<=1)
AI 개요
(1) 일대일 대응의 정의: 함수 f: X → Y에서, X의 서로 다른 임의의 두 원소 x1, x2에 대해 f(x1) ≠ f(x2)이고, Y의 임의의 원소 y에 대해 f(x) = y를 만족하는 X의 원소 x가 적어도 하나 존재할 때, 함수 f를 X에서 Y로의 일대일 대응이라고 한다.
(2) 함수 f(x)가 x=a에서 연속일 조건:
lim x→a f(x)가 존재해야 한다.
f(a)가 정의되어야 한다.
lim x→a f(x) = f(a)여야 한다.
(3) 명제의 참 거짓 판단:
명제:
"실수 전체의 집합에서 실수 전체의 집합으로의 함수 f에 대하여, f가 일대일 대응이면 f는 연속함수이다."
판단:
거짓
반례:
코드
f(x) = { x (x<0)
{ x+1 (x>=0)
이 함수는 일대일 대응이지만 x=0에서 불연속이다. 따라서 주어진 명제는 거짓이다.
대충
함숫값 다를때 x값 다르면서 치역=공역인거
함수의 좌극한 우극한 함숫값이 존재하고 싹다 같을때
반례는 위에다 적었으니 생략
이거 연속인건 원래 엡실론델타 써야하는데 엡실론델타 꼴보기도 싫으니 안쓸거임 ㅅㄱ
1.일대일 함수이자 치역과 공역이 동일하면 일대일 대응이라 한다
2. x =a 에서 lim x ->a f(x) = f(a) 라면 fx 는 x=a 에서 연속이라고 한다
3. 참이아니다, 반례: f = 1/x (x 가 0아닐경우) 0(x=0)
3. 해당함수는 일대일대응이 모든 실수에사 성립하지만 연속함수가 아니다

좋습니다 ㅎㅎ감사합니다~