이 문제 풀 수 있는 분 계신가요??????
게시글 주소: https://orbi.kr/00073091937
학력 높아보이는 곳에 여기저기 물어보고 있는데 아무데서도 해결이 안돼요
어케 푸나요?? 논리적으로 설명을 못하겠음
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
그거 아냐 1
아냐 아냐
-
무물보 받슴 12
그렇슴
-
공유하실 분 있나요
-
자기는 착한 남자인 줄 앎 ㄹㅇ ㅋㅋㅋㅋ 남자들이 말하는 “여자들이 좋아하는 나쁜...
-
무물 3
무우
-
대재명 형님 지옥에서 살아돌아온 남자다 혼자서 전라도 민주당 다 먹어버리고...
-
보통 빡공하시죠? ㅠㅠ 그리고 보통 반수생들은 몇월부터 많이 공부하나요 주변에...
-
4수해서 그런가 1
예전엔 수학할 때, 숏컷풀이 같은거 생각하려고 시간을 썼는데 요즘은 걍 머리 쓰기...
-
뭐하나요? 진짜 마닳이나 사서 기출공부나 할까
-
아 오타 8
오타가 아니라면 흐흐
-
본인 중딩 때 수포자로 살다가 16살 때 처음으로 미지수랑 방정식 이항 일차방정식...
-
비까지 오네 생각보다 책이 엄청많네..
-
왜 틀림 씨발 4
죽음 걍
-
작수 15번 생각나서 04 48 인거 바로 잡고 비율관계 써서 함수 1분컷 했는데...
-
다들 공부 화이팅
-
또 병크 터짐 0
덕코라고 생각하고 썼는데 정신차려보니까 레어라고 썼었네
-
6시까지 유종의 미를 거두고 오자
-
돈 내면 식권받을수 있음? 아빠회사 동료인가 후배직원인가 결혼한다던데 아빠는 바빠서...
-
그대가
-
ㅇ
-
불편
-
국힘해산되나
-
3시30분까지 한과목만 하려고함 수학 제외 국어 영어 사문
-
“동기들은 수업 복습할 때, 혼자 인터넷강의를 들으며 F=ma(뉴턴의 운동법칙)...
-
ㄱㅁ하나할게 10
-
https://orbi.kr/00073082844 언매 39번을 보시면 알겠지만...
-
진짜 미친놈같네
-
난 이게 맞아 탐구 비중 90% On
-
병신과 머저리 3
-
예
-
시험지 운영하면 평균적으로 독서론 3~5분 화작 14~16분 문학 27~30분...
-
점수가 더 잘나옴 난이도 비슷한데.. 특히 수학
-
단순히 잘 만들었다를 떠나서
-
노베면 좋은 점 3
커로 뜰까봐 걱정할 일이 없어요 ㅋㅋ 뜨면 그날 한강 가야하기 때문...
-
롤 ㄱ 2
오랜만에 해보고 싶다
-
이재명 "가만히 있으면 상대방 자빠져...난 아무 짓도 안했다" 24
더불어민주당 이재명 대선 후보는 10일 국민의힘이 대선 후보를 김문수 후보에서...
-
덕코 부족할땐 아이브, 르세라핌 등등 아이돌 레어사면 그냥 모임 17
가끔 써먹는데 가끔씩 물릴때도 있음
-
나만 이런가 10
모고 전까지 매일 불안해하고 우울하게 공부하다가 시험 보고 성적오르면 기분 좋아짐...
-
수학은 사실 거의 안들음
-
4월 더프 한번 봤는데 확통 66점으로 5등급... 수능환산 4등급 이렇게 떳네요....
-
점메추 7
진짜진짜맛있는거 본인 최애 메뉴 적고가주세요
-
다정한 말로 나를 죽여놓고.
-
길 지나가면서 보이는 애들 중에서 같은 반이었던 애들은 서로 초딩 때 같은...
-
고전시가 듣고싶당
-
5모수학 15번 난이도 14
어려웠나여?저는 문제보고 패스해서 몰루?
-
문제가왜이럼...
-
전제가 어쩌고
-
진짜 맨날 준킬러에서 눈알삐어서 안절면 될거같은데
h(x)의 x=a에서 미분가능성, g(x) 불연속점에서의 미분가능성
다들 풀이 감사합니다
지금 막 강기원쌤 겨울 vod 듣기 시작한 낮은 1등급 따리라 풀이를 봐도 g(x) 함수에 대한 이해가 많이 부족한 것 같네요
우선 vod 다 들으면서 이 주제에 대한 기초 학습부터 하고 오겠습니다...
다들 풀이 감사합니다
지금 막 강기원쌤 겨울 vod 듣기 시작한 낮은 1등급 따리라 풀이를 봐도 g(x) 함수에 대한 이해가 많이 부족한 것 같네요
우선 vod 다 들으면서 이 주제에 대한 기초 학습부터 하고 오겠습니다...
다들 풀이 감사합니다
지금 막 강기원쌤 겨울 vod 듣기 시작한 낮은 1등급 따리라 풀이를 봐도 g(x) 함수에 대한 이해가 많이 부족한 것 같네요
우선 vod 다 들으면서 이 주제에 대한 기초 학습부터 하고 오겠습니다...
식으로 접근: f(g(t))=t에서 역함수꼴 발견
or g(x) 미분계수가 해당지점 f(x)의 미분계수 역수인 것 정도만 알아도 충분합니다.
어려운 부분은
g'(t)가 0일 수 없다는 점과, f'(x)=0인 지점에서 g'(x)가 발산한다는 점이 변별 포인트입니다.
단순 g(x)해석이 안되시는 거면 250628이랑 f와 g의 정의가 비슷하니 한 번 풀어 보시면 좋을 것 같습니다
아 역함수로 보니까 g'(t)가 0일 수 없다는 것도, f'(x)=0인 지점에서 g'(x)가 발산한다는 것도 직관적으로 이해되는 것 같습니다!
그럼 f(x) 개형에 따르면 g(x)가 불연속인 곳은 f(x)가 극대인 곳 말고는 존재할 수 없고,
---> 그렇기 때문에 h(x)의 유일한 불연속 점인 x=a가 곧 f(x)의 극댓값이 되는 것인가요?
h(x)의 불연속 점이 "오직 x=a 하나뿐" 이라는 조건이 없는데 f(x)의 극댓값은 a인지 뭔지 알 수 없게 되는 것이 맞나요???
그리고 g'(a-) -> 무한대 이므로 a=0 에서 g'(a-) -> 무한대 인 것은 역함수를 통해 이해했는데, 거기서 a=0이라는 결론이 나오는 것은 두번째줄 좌,우미분계수가 서로 같다는 식에서 "ag'(a-)" 라는 항이 어떤 값으로 반드시 수렴을 해야만 하기 때문에, 무한대 * 0 이어야 하기 때문인가요??
그리고 a=0 이기 때문에 첫번째 줄의 등식에 의해 우변의 g(a+) = 0 이 되고 이를 f(x)의 그림 위에서 관찰해보면 극대 살짝 위의 y=t 와의 교점의 최솟값이기 때문에 저 위치가 x=0으로 확정되는 것이고,
아직 g(a-) 즉, f(x)의 극대의 x좌표는 아직 모르기에 k라 두고 두번째줄 식에 아는 것을 전부 대입하면 k + 0 = 0 - g'(a+) 이므로 k = - g'(a+)가 되고 g'(a+)는 그림으로 관찰하면 f(x)의 x=0에서의 접선을 역함수 취한 직선의 기울기이므로 1/k^2 ---> 따라서 방정식 풀면 k = -1
제가 이해한 것이 맞을까요???
너무 길어서 죄송합니다 ㅠㅠ
1. f극대 -> g불연속 이므로 g불연속점은 1개인 것은 맞습니다.
하지만 h(x)는 미분가능합니다.
h(x)의 유일한 불연속점 ... h(x)가 미분불가능할 가능성이 있는 유일한 점이라고 이해하면,
h(x)는 불연속함수(일 수 있는) g(x)로 정의되기 때문에 x=a가 유일한 점은 아닙니다.
풀이는 g(x)가 x=a라고 가정한 귀류법을 이용한 갓입니다.
좀 더 논리적인 풀이로는 g(x)가 실수 전체 미분가능일 리는 없을 것이라 추론했고, g(x)의 미불점을 상쇄시킬 수 있는 곳은 x=a뿐이라고 추론도 가능합니다. 참고로 g(x)가 실전미가라고 가정하면 앞서 풀은 x=a에서 g'(a)=0이라는 같은 결론이 나오긴 합니다
2,3질문은 정확합니다. 제가 풀이에 계산셍략을 많이 하는 편이라서 최대한 적는다고 적었는데 지금 보니 논리성이 떨어지게 적었네요
아 제가 오타를 냈네요 죄송합니다... g(x)의 불연속점이 x=a인 것을 구한 시점에서 h(x)의 불연속점이 x=a밖에 없는 것으로 이해하고
6번째 줄에 "이라는 조건이 없으면" 이라고 써야할 것을 "이라는 조건이 없는데" 라고 아예 다른 의미로 해석되게 써버렸네요