[칼럼] 『영역전개』 "벡터해석"
게시글 주소: https://orbi.kr/00073056448
기하의 주요한 세 파트는
이차곡선, 공간도형, 벡터입니다
이 중 이차곡선은 지금까지 해온 평면 기하의 연장선이니 수험생들이 상당히 빠르게 익숙해지며
공간도형의 경우에도 사교육 걱정으로부터 수험생들을 해방하려는 고결한 노력 끝에
평면의 방정식 등이 대거 약화되고, 평가원도 문제를 좀 쉬엄쉬엄 내주는 덕에
숨 쉴 구멍이 많이 생겼습니다
하지만 벡터의 경우는 이야기가 좀 다른데
지금까지 수학에서 접했던 존재들과는 결이 다릅니다
길이, 넓이, 부피, 속력
초등학교 때부터 우리는 무슨 길이를 구하라느니, 움직이는 동안 걸린 시간이 얼마라느니
소금물에 물을 탔다가 소금을 탔다가 소금물끼리 섞었다가
이러한 스칼라 값을 수학적으로 다루는 것에 집중해왔습니다
하지만 벡터는 단순히 크기만 가지는 것이 아니라 '방향'이라는 요소가 도입된
지금까지 우리가 해온 수학과는 범주 자체가 다른 존재라고 할 수 있습니다
그렇기에 낯설죠
이렇게 근본적으로 다른 존재이기 때문에
벡터끼리 더하고 빼는 기초 연산부터 다시 정의됩니다
게다가 사교육 걱정이 사라진 덕분에 벡터가 평면이라는 족쇄를 차게 되면서
어떻게든 생소하고 낯선 상황을 제시하려는 평가원의 몸비틀기가 더 심해지고 있습니다
따라서 축이 하나 줄어든 벌로 수험생들은 벡터 자체를 해석하는 능력을 더욱 정교화할 것을 요구받고 있는데
이는
0. 벡터의 연산 자체의 성질을 활용
1. 벡터를 점으로 보는 관점
2. 벡터를 선분으로 보는 관점
3. 벡터를 영역으로 보는 관점
에 대해서 0을 확실하게 숙지하고 1, 2, 3 간의 관점 전환을 자유롭게 할 수 있어야 함을 의미합니다
그 중에서 이번에는 '3'에 집중해서 문제를 관찰해보겠습니다
24년 6월 30번으로 대놓고 X가 나타내는 영역의 넓이를 구하는 문제죠
따라서 수험생들이 3번의 관점으로 접근했다면 문제를 쉽게 맞출 수 있었습니다
EBS에서도 '영역으로 푸세요 ㅎㅎ라'고 해설하고 있죠
하지만 여기서도 1의 관점이 조금 필요한데
직선 위의 점 P와 타원 위의 점 Q 중 하나는 점으로 보고 다른 하나를 영역으로 간주하여
점으로 보는 벡터에 대해서 영역을 옮겨야 X의 영역이 제대로 나타나기 때문입니다
P를 점으로 보고자 한다면 타원의 중심이 직선 위를 움직이는 영역으로 나타날 것이고
Q를 점으로 보고자 한다면 직선이 타원 위를 빙글빙글 돌아가는 영역으로 나타날 것이기 때문입니다
메가 기준 정답률 8%로 바닥을 긴 23년 6월 30번
(가)와 (나)가 모두 CX와 관련된 식인데 도무지 두 식을 어떻게 연관지어야 할지
또 그 이후에는 CX를 어떻게 처리할지가 난관이었다고 생각됩니다
전자의 경우는 0 즉 벡터의 연산과 성질 자체에 대해 익숙치 않아서 생긴 문제라면
후자의 경우는 (가)와 (나)를 통해 얻은 벡터의 해석이 미숙해서 생긴 문제라 할 수 있습니다
이 역시 영역의 관점을 도입하면 해결됩니다
먼저 (가)와 (나)를 해석하면
이렇게 정리할 수 있는데 CX에 대한 조건이 두 개나 걸려있습니다
과연 저 두 조건을 어떻게 해석해야 하나... 여기에서 1의 관점을 한번 사용해봅시다
일단 (가)의 조건이 모호하니, 좀 더 구체적인 (나)를 정리한 조건을 이용하면
제시된 세 벡터의 시점이 모두 C니까 C를 원점으로 하고 CD를 x축으로 하는 평면을 도입해보면
CX는 C를 원점으로 할 때, y좌표가 sqrt(3)인 점이 (나) 조건의 의미라 할 수 있겠네요
그렇다면 이제 (가)로 돌아가서
P가 정육각형 위의 점이고, Q가 원 위의 점인데, 제시된 벡터 모두 시점이 C로 동일한데
기시감이 느껴지지 않으시나요?
얘랑
얘는
시점의 알파벳만 다르고 상황이 똑같지 않습니까?
아까 문제를 해석할 때
한 벡터를 점으로 보고, 다른 벡터를 영역으로 보면
후자의 영역이 전자의 도형을 움직이는 영역으로 표시됐던 것 기억하시죠?
따라서
이를 시각적으로 나타내면
다음과 같은 회색 영역이 X로 가능한 영역임을 알 수 있습니다
그런데 아까 X는 y좌표가 sqrt(3)인 점이라고 했죠?
그러므로 CX가 최소일 때는 X_1, 최대일 때는 X_2가 되어야 함을 알 수 있습니다
그렇다면 X가 X_1일 때 2-k=0이고, X_2일 때는 2-k=4이므로 alpha=2, beta=-2입니다
비슷한 관점에서 이 문제 역시 영역을 도입한다면
시각적으로 언제가 최소가 되고 언제 최대가 되는지 확실하게 알 수 있습니다
결론)
료이키
텐카이
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
평발 다한증 Adhd 난시 비염 으악!
-
어딨지 여깄나? (팬티를 들춰보며)
-
으악 이차곡선 싫어 16
아니 좋아 아니 싱ㅎ어 아니 좋아 아니 싫어 내마음은뭘더대체뭘까
-
악기 취미 때려칠까요 13
악기 하려고 공부 안 한 적 올 해 한 번도 없었긴 한데
-
기숙은 안된다 씨바랄거
-
6모까지 한달이다......... 성적 올릴 수 있을까
-
전여친이 11
다시 연락오면 어캄? 헤어졌을 때 얼마나 ㅈ같았는지에 따라 다를거 같긴한데 님들은...
-
아...나는 희망이 없는것인가...
-
???
-
부모님께서 6월 중순쯤 4박5일로 해외여행 가자하시고, 친구들은 6월 말쯤 1박2일...
-
진짜 걍 모든 악재를 정통으로 처맞은듯 강민철 종강보다가 3등급~백분위 98까지...
-
반수 0
반수 미적과탐or미적사탐느로 시작해서 지금까지하먄 얼마나 할수있을까요 작수는 올3기준으로 하면요
-
토익왤케어렵냐 5
아
-
아찔하네 그날은 휴릅할 예정임. 일단 그런거임
-
이거 어떻게 풀어요 11
어쩌라는건지 모르겠는데 힌트 좀 흐흐 다들 고개 옆으로 돌리는 상상하니까 귀엽다
-
모든 오르비언을 구축해버리겠다고
-
카네이션 사갈까 맥주를 사갈까ㅋㅋ
-
최근수능으로 비유해주시면
-
축?하
-
김진아 하지원 최홍라 정설아
-
PR + QR의 최소가 산술•기하 평균 썼을 때 PR=QR 일때 아닌가요? 해설도...
-
표점 기준 인문 1등은 통합 21등이었습니다. 통합 1등~20등은 전부 자연계열이었군요…ㄷㄷ
-
고백하지마
-
소개팅할때마다 낚인게 한두번아님 ㅅㅂ
-
ㅅㅂ 윌케 어렵지. 1회 4개맞았는데 이게 맞나... 저만 어려운가요?
-
뉴비 0
랑 맞팔하실분
-
앱스키마가 1~2등급 아님 풀기 어렵나요 내용이? (본인 4~5등급)풀커리 타고...
-
의대갔다고 친한 친구한테 들었다.. 내가 걔 수학도 알려주고그랬는데.. 걔네엄마가...
-
사문 재밌어보이네 13
찍먹 함 해볼까
-
이원준 들을까 7
여기도 그렇고 학교도 그렇고 잘하는 애들이 다 이원준 듣네..
-
D-190 반박시 당신이 정답!
-
오늘도 오르비 정상화
-
실수전체에서 증가하는 함수a^x와 그의 역함수loga에 x의 교점은 항상 0개 or 짝수개 맞나요?
-
학교 빠지는 법 공유좀요 ㅠㅠ 여태까지 학교 빠지는 날이 손에 꼽을 정도로 없었는데...
-
https://orbi.kr/00073056448
-
레전드 ㅈ반고 3
1학년 중 3모 수학 1등급 없음 2학년에 3모 수학 1등급 2명 이번 중간고사...
-
김동욱쌤 듣고있는데 반응할 포인트도 명시적으로 안잡아주시는거같고 그냥 지문 해설...
-
나만 대댓글이 없어 20
차단 당한거다 이건
-
엑셀이랑 이펙트 만족함니다 과함이 없음
-
개념 다 안다는 가정 하에
-
https://orbi.kr/00073056448 도움의 손길을 구해도 될까요?
-
아오 힘들어 10
-
ㅁㅌㅇ
-
작년 실모 구해다가 풀려고 하는데 뭐가 퀄이 좋은지 모르겠네용.. 그냥 이감 파이널...
-
기출 역행중인데 점수는 올라가고 등급은 안바뀌는게 참 맛없네
-
수1,미적에 비해 난이도가 더 높은거 같은데 저만 글케 느끼나요...?
-
편의점 카페인 음료 1, 2티어에 뭐뭐 있나요?
-
잔다 14
-
ㅇㅅㅇ;;
공간도형 많이 봐주고 있는 거 같긴 해요
기하 응시자가 많이 없다보니까 기출뺑뺑이로 갈려는 거 같은데 벡터는 얘기가 다르긴 하죠 낯설기도 하고
기출소재로 내도 대가리 터질수도 있으니까..
스크랩해놓고 심심할때마다 읽어야겟음 좋은 글 감사합니당
애초에 공간 자체가 팔다리 다 잘리고 삼수선만 남은지라 상황을 꼬아내는 자체에 한계가 생기다보니 ㅜ
그래서 평벡에서 온몸 비트는 거 같긴 합니다 ㅋㅋㅋ
진짜 개처럼 개추를
벅벅벅벅벅벅벅벅벅벅벅벅벅벅벅벅벅벅벅벅
[짧럼] 울트라맨 칼럼 독해법
1. 스크롤을 아래로 쭉 긁는다
2. 세 줄 요약을 읽는다
3. 스크롤을 맨 위로 올려서 요약대로 구간을 나누어 정독한다
'이번엔 두 줄'
그저 빛.. 감사합니다
기하 화이팅

기하러 좋아요 누르고 갑니다사걱세 덕분에 141129같은 흉악한 킬러로부터 수험생들이 해방되니 기쁘도다
요즘 기하 난이도가 적절히 잘 나오는 듯해요
푸는 맛이 좋아서 계속 하게 되네여
평면으로 한정된 덕에 상황 해석하는 난도가 높아진 덕분 같아요
와 선생님 세ㄱ스 감사합니다 이차곡선 공도는 먹던맛이라 할만한데 벡터가 진짜 막막했거든요 잘먹겠습니다감사합니다
캬 떴다
오늘 프메 영역 파트 강의 듣기 전에 문제 푸는데 앞과 다르게 진짜 모르겠어서 내가 문제 있는 건가 싶었는데 원래 난이도가 있는 파트였군요 참고 열심히 해보겠습니다
(혹시 이런 파트 잘 안 풀리면 벡터 초반 부분 기출 파트 전부 끝내고 공부하나요 아님 우선 부딪혀보나요...?)
어림도 없지 이쪽도 료이키 텐카이 무료쿠쇼!
영역대결을 해보자!◕‿◕
공간도형은 대체 어떻게 풀이하는 거였나요..??
기하 잘하는 사람들은 이차곡선, 처음하는 사람들은 공간도형을 어려워한다 라고들 말하는데 저는 문제를 풀면 풀수록 벡터가 제일 맵더라구요
걍 벡터가 제일 어려운게 맞음요
이차곡선은 뭐 사설에서 케이스 개꼬아서 냈을 때나 아니면 방심하고 유기하다가 빡 맞는경우거나..
다들 고이면 벡터가 제일 쉽다는데 저만 어려워하던게 아니었군요ㅜㅜ 진짜 벡터는 관점을 돌린다고 문제 노려보는 시간이 제일 길고 풀때 호흡도 길어서 힘들더라구요
이차곡선은 그냥 수1 연장선이라서 기하느낌이 제일 안나죠. 저는 개인적으로 제일 노잼이에요
공도는 기하 그 자체고...
벡터는 문제에서 내주는 조건 해석만 쭉쭉 잘 따라가면 아무리 어려운 문제라도 답을 쉽게 낼 수 있는데 그 조건 해석을 적절하게 하는 게 어려운 것 같아요. 예를 들어 벡터의 합을 누구는 내분점으로 해석하고 누구는 성분화해보고 누구는 제곱해보고 누구는 분해하거나 평행이동해서 자취로 표현해보고... 잘 안 풀리면 현T께서 말씀하신 것처럼 손절이 익절이라고 빨리 다른 방법으로 넘어가야 되는데 그게 쉽지 않죠. 미적 30은 손도못대는 경우가 많은데 기하 30은 벡터 못하는 사람이어도 조건 해석만 잘하면 5분컷 할 수 있다고 생각해요. 출제의도대로 조건 해석하는 게 힘들어서 그렇지...