미적에서 나온 역함수 문제 수1, 2에서도 출제 ㄱㄴ?
게시글 주소: https://orbi.kr/00072999668
미적 역함수 주제 중에 f(x)=t의 교점의 x좌표를 g(t)라해서 f,g가 역함수 관계에 있는 걸로 푸는 문제있는데 이 주제가 수1이나 수2에서도 충분히 활용될 수 있나요?
ex) 로그함수 f(x)=t의 교점을 g(t)라 하자. ~~
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
???:어 그렇게 올려
-
피드백 원래 어려운 교재죠? 피드백 과학 기술 풀면 뇌가 녹는 느낌인데
-
어떰요
-
솔직히 이재명대신에 딴사람나오면 더 쉽게이길거같은데 ㅋㅋ
-
다른쪽에선 너도 내란세력아니냐고 아옹다옹 거리는게 벌써부터 머릿속에 그려지네요
-
[속보] 한덕수 "대통령 권한대행 국무총리직 사퇴" 9
[속보] 한덕수 "대통령 권한대행 국무총리직 사퇴"
-
엥??
-
또상목 권한대행 0
아이고난
-
대한민국 사법계는 12
아직 살아있던거였구나 ㄷㄷ
-
대학에서 1학기다니면서 수능준비하다가 2학기때는 휴학하고 할거같은데 지금 언매버리고...
-
체력을 위해 주 1회 운동은 꼭 해야한다는 사람들이 종종 보이는데 운동안하면 공부...
-
법정하다가 법정가서 정법으로 바꾼건가
-
사탐은 보너스 과목정도로 밖에 안보임
-
몇년만에 하는건데 벤치 70 5×5 했다가 일상생활 힘들정도로 아프네
-
특별한 경험 2
권총사격해본적있음뇨 실탄으로
-
진짜 시간박으면 오르는 과목은 수학이 끝아님? 영어는 고정1 나오는애들은 뭔가...
-
강기원 사생팬1 0
"왜요?" 오일러가 강기원에게 물었다.
-
원래 모스트였는데 메타충 같으니까 빅토르 해야지
-
기분도 울적해서 생윤 기시감 샀다 ㅎㅎ
-
개 재밌게 할 자신 있는데 ...
-
어떻게 몇개월동안 하는거죠… 이건 정말 사는게 사는게 아닙니다..
-
학력고사 시절에서 수능으로 넘어온 이유가요 개나소나 단순암기로 마빡에 쳐박아넣으면...
-
그래서 4등급나옴 젠장
-
몇등급이심?ㄷㄷ 5일 한권도 겨우 쳐내는데
-
작년에도 9평 수능에서 27,28 다 맞췄는데 올해도 다 맞춰보자!! ㄹㅇ 공도가...
-
진짜 얘가 어떻게 우리팀 정글이냐
-
윤석열 탄핵심판때 그렇게 탄핵 안될거라던 닉네임들이 하나 둘씩 보이기 시작함 ㅋㅋㅋㅋㅋㅋㅋㅋ
-
답은 이준석임 16
이대남은 이준석 이대녀도 이준석
-
착각인진 모르겠지만 10
이번대선이 역대급으로 뽑을 후보자가 없는거같음 ㅠㅠ
-
기말까지 해서 2등급 만들어줄거임 작년 5등급에서 올해 2등급으로 !! 2학기에도...
-
무물보 3
수능 영어 질문 받음. 하면 알려줌.
-
걸그룹얄범이 명반에들어간이유가잇다
-
사진오류가 떠서 다시 질문 합니다 미분계수의 가능성은 극한값존재 좌미계수와...
-
ㅈㄱㄴ
-
요약하면 5
2심이 무죄였는데 대법원에서 2심의 판결이 잘못된거같다해서 다시 고법에서 판결하라고 보낸건가요?
-
순서대로 28예시21, 241122, 1811가30입니다. OpenAI o1이나...
-
윤어게인 하는 심리인가
-
27정시비율 0
똑같이 40이겠죠?
-
강사들 진짜 천박하다 70
작년 공부할때 69평 수열 22번 문제 이렇게 풀면 쉽게 풀 수 없냐고 QA 올림...
-
진짜 여러의미로 대단하네 어떻게 매번 살아남냐
-
꼬우면 그런 후보 지지하지 말고 이준석 지지하라고 ㅋㅋㅋㅋㅋ
-
[속보]대법원, 이재명 ‘선거법 위반’ 유죄 취지 파기환송 2
대법원이 이재명 더불어민주당 대선 후보의 공직선거법 위반 사건에 대해 다시 판단해야...
-
[속보]
-
[속보]대법원 전원합의체, 이재명 선거법 사건 유죄취지 파기환송 1
1일 대법원 전원합의체
-
[속보] 이재명 '선거법 위반' 파기환송…2심 무죄 뒤집혀 37
이재명 '선거법 위반' 파기환송…2심 무죄 뒤집혀 대법 전원합의체 "2심 무죄 다시...
-
[속보]
-
[속보] 대법 "이재명 선거법 위반 사건 '유죄 취지 파기환송'" 0
대법원 전원합의체는 1일 공직선거법 위반 혐의(허위사실공표)로 기소된 이재명...
-
그래서 언제?
-
[속보] 대법 "이재명 골프·백현동 발언은 허위사실…허용 불가" 1
대법 "이재명 골프·백현동 발언은 허위사실…허용 불가"
-
속보: 파기환송 2
고1수학내용이라 안좔건 없지않너
역함수는 고1때 배워서 얼마든지 낼 수 있죠
저런 주제가 교육청 포함해서 수2에서도 출제된 적이 있었나요? ㅇ공통에서 출제된 적 없었으면 미적 선택자들한테만 유리한 문제 같은데
?? 역함수 미분 말고 역함수에 대한 내용은 얼마든지 낼 수 있어요
이 분 말은 f(x)=t의 교점의 x좌표을 g(t)로 잡는 거 말하는거같은데 난 이건 안나온다봄
171130 (나)형 보세요
그러네요. 수2 그 문제도 있었네요
평가원이라면 안낼거같읍
왜욤?
유불리가 생기니까요
그렇군요
241121이 그런 비슷한 거 아닌가
아 6평인데 수정하려하니까 답글달림...
아 그 ㄱㄴㄷ 문제 ㅋㅋㅋㅋ
하고 28예시30 이것도 지수로그관계 쓰던데
밎아요
근데 그건 본문에 언급된 ‘역함수 관계’를 이용해 푸는 문제가 아니니까
그런가... 듣고보니까 그럴 수도 있네요 개인적으론 지수로그 밑 맞춰지면 대부분 역함수 관계 쓰게되던
220321 이거 본문 뉘앙스랑 비스하지 않나요
직접 대입해서 풀수있긴한데 16~17쯤에 삼차함수 =t 근중 제일 작은게 ft 제일 큰게 gt 뭐이러면서 미분한거 구하라 어쩌구저쩌구 문제 있긴했어요
그거 아마 나형 교육청에 있을텐데
평가원 기출중에서도 봤어요 수능이었나 9월이었나는 헷갈리네요
제가 본문에서 말한 주제가 그 문제에서 처음 나온 주제인데 그 문제는 미적분 문제인걸로 알아요! 이후에 사설에서 x좌표 함수를 역함수로 보는 문제가 많이 출제된..
아 검색해보니 수능 16 b형(사실상 가형) 21번이네요 부분역함수면 미적분이고 대입하면 수2라고 순간생각했는데 생각해보니 수2는 합성함수 미분안배웠죠 참 ㅋㅋㅋ
뭔가 이 주제도 수2나 수1에서 충분히 활용될 수 있을 거 같은데.. 유불리 때문인진 모르겠지만 사설에서 공통으로 활용된 걸 본 적이 없어서..
맞아요 부분 역함수 미적분에서 엄청나오죠 ㅋㅋㅋ
200730 x좌표를 g(t)로 두는데 x좌표가 상수 아니면 일차항이라서 적분하는 문제 나와요
이 문제 몰랐는데 ㅋㅋ 풀어봐야겠네요
일단 나형이고, 교육청이니까 나올 수 있다봄 근데 다같이 치는 통합수능에다가 평가원이 낼 가능성은 많이 희박한거같은데
저도 x좌표를 함수로 잡는 문제는 유불리가 있다고 보긴 하는데 뭔가 공통에서 한 번쯤은 풀어보고 싶네요 ㅋㅋ
낼수가 없음 나형이랑 오히려 달라요
나형 때는 나형러만 치는 시험지라 나온거지 통합 이후로 저런 문제 내기 힘듦
230620도 논란 있었던거 보면 힘들듯
근데 미적만큼 역함수의 특징을 십분활용하는 문제는 절대 안나올거라 생각하시면돼요
평가원이 얼마나 그런거에 칼같은데...