미분계수의 정의 질문 있어요
게시글 주소: https://orbi.kr/00072998843
ㄴ이 참이 아닌이유가 뭔가요?
강의를 보아도 이해가 안가네요
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
[속보]
-
[속보] 대법 "이재명 선거법 위반 사건 '유죄 취지 파기환송'" 0
대법원 전원합의체는 1일 공직선거법 위반 혐의(허위사실공표)로 기소된 이재명...
-
그래서 언제?
-
[속보] 대법 "이재명 골프·백현동 발언은 허위사실…허용 불가" 1
대법 "이재명 골프·백현동 발언은 허위사실…허용 불가"
-
속보: 파기환송 2
-
제발 무죄 4
제발 무죄여야한다 김문수는 안된다 그리고 세상은 내가 12살때부터 내 말과 반대로...
-
이러면 뭐 확정이네
-
씨발 ㅋㅋㅋㅋㅋㅋㅋㅋ
-
상기해도 개웃기네 옛날에 그 에반데 에바야 그래 이건 에바다 드립보다 웃김
-
전 ㅈㄴ게 굽네 ㅋㅋㅋ
-
되게 헷갈리는데….ㅠㅠ 일단 속함수의 극값이 겉함수의 극값이 되는거 맞나요?...
-
올오카부터 풀커리 타는중이고 한번도 밀린적 없어서 지금 Tim 끝내논 상태인데...
-
제발 드가자 스벌
-
1은 사문인거 확실하고 2위 궁금 궁금
-
[속보] 대법 “허위사실 공표에 해당 2심 무죄 판단 법리 오해” 13
[속보] 대법 “허위사실 공표에 해당 2심 무죄 판단 법리 오해”
-
"PV=nRT" 여러분들이 흔히 아는 화2 이상기체방정식 그리고 놀랍게도 도쿄...
-
무죄확정은 물건너갔고
-
저는 무죄 나올거같긴 한데 간단히 예측답댓 달고 맞추신분 한분한테 덕코를 드리도록 하겠습니다(?)
-
대선 못나가는건가
-
[속보] 대법 “백현동 국토부 요구 관련 명백히 허위 발언” 2
대법 “백현동 국토부 요구 관련 명백히 허위 발언” [사진 출처 : 연합뉴스] ■...
-
유죄네 1
.
-
2014학년도까지 서울대는 내신을 반영했고요 2015학년도부터 2021학년도까지...
-
독서랑 화작도 꼭 해야하나요?
-
가방에 신발까지 다젖음 시발점이랑 아이패드 케이스에도 물 들어갔네
-
앱스키마 0
아직 팀 안했는데 앱스키마도 사는게 나음?? 아님 그냥 팀만 하고 나중에 아수라?
-
비가 내리네요 세상이 날 억까해
-
[속보] 대법 “이재명 골프발언은 허위사실 공표 해당” 2
이재명 더불어민주당 대선 후보가 김문기 전 성남도시개발공사 처장과 “골프를 친 적...
-
문도!‘ 4
칼바람이 하고 싶다!!
-
뉴런 수2 띰12 - [주제2] 구간에서 최댓값, 최솟값으로 정의된 함수 아무리봐도...
-
흠..
-
심장이 자꾸만 반응해요 쿵쿵쿵쿵 심장이 바운스바운스 두근대 들킬까봐 겁나~
-
"못생길수록 수명 짧아"…고교 졸업사진 65년 추적했더니 5
[서울=뉴시스] 최윤서 인턴 기자 = 매력 없는 외모를 가진 사람이 평균보다 수명이...
-
편의점 갔다올까
-
살짝미분이란게 3
Sn=2n2+4n이라는 식이 있으면 S’n=4n+4 an=4n+k a1=S1=6...
-
이게 답 4 5로 갈리는데 전교1등은 4인데 어떤 애가 wolfram math...
-
오리비 유튜브 구독자 벳지가 젤루 이쁨
-
다시 가보자 새로운 세상을 향해 하늘을 향해 영광스러운 진화를!
-
필요하다고 봄뇨?
-
하는데 뭐 소득공제 어쩌구 때문에 부모님 연말정산시에 알게 된다는데 사실인가요...
-
USKMLE같은건 없나 역시 수능밖에 없군
-
이거 너무 귀여움 14
이모티콘은 ㄹㅇ 잘만들어 인스타나 카톡에서도 쓰고싶음
-
10회독째되니까 하루에 한단원씩 킬러까지봐지네 전파,공공부조,부양비,계급남아따
-
현자타임 4
180분 등하교 for 75분 수업 ㅠㅠ
-
성적 미리 알려줄 수 없냐고 카톡하니까 반신반의로 욕먹을 각오로 한건데 세시반쯤에...
-
거스가 아파 9
트리케라톱스 빠밤 마차를 끌고 가버려 빼엠 오늘도 사건을 해결했군 꺄아악 나는 야...
-
ㅇㅈㅅㄱㅇ 님의 칼럼에 감명 받아 현대시를 풀 때 (가) 지문 풀고 문제 풀고(나)...
미분계수의 정의가 아니니까요
저걸 쪼개서 미분계수의 정의로 바꿔보세여
0으로 수렴함
평균변화율의 극한
그냥 미분 생각하지 말고
좌우극한 나눠서 극한으로 보세요
정리하면
준식=좌미계+우미계
여서 -1+1=0으로 수렴해요
그렇다면 1이 아닌 2나 다른숫자로 수렴할경우면
값이 존재하지 않겠군요
아니죠
준식의 우극한과 좌극한이 모두 (좌미계+우미계)로 같은 값으로 나오는거이기 때문에
그 값이 1이던 2던 모두 존재하는거에요
극한값 존재라는건
결국 좌극한=우극한이란것만 만족하면 되는거니까요
아 뭔가 혼란스럽네요
절댓값이 붙은 미분계수는 성립할 수 없다고 알고 있는데
이건 그거와 무슨 차이점이 있는건지 알수 있을까요
오히려 좌우미계가 절댓값에 의해 달라져서 성립불가라고 알고있거든요
절댓값이 붙어있던 아니던
우선 주어진 극한값을 "해석"하는게 우선입니다
해석을 좌미계+우미계로 잘 했다면 그때 f(x)가 뭔지 신경써야하는거고
f(x)가 절댓값이 있다 하더라도 구해야 하는 값인 우미계와 좌미계 모두 존재하기 때문에
절댓값과는 무관하게 존재하는거에요
그냥 "1에서의 미분계수"가 구하는 값이었다면 존재하지 않는게 맞지만
"우"미분계수랑 "좌"미분계수를 구해야 하는건데 둘 다 존재하고 그 합은 일정하기 때문에 주어진 극한이 존재하는거에요
좌미계와 우미계의 값이 있다는 이해했습니다
다만 저 값들은 다르니 저 식의 저 식을 아우르는 극한값 전체는 없는거 아닌가요
답답하실거 충분히 이해갑니다ㅠ
뭐 저도 처음 배웠을 땐 헷갈렸으니까..
처음부터 천천히 다시 보시면 극한이 존재한다-->그 극한식의 좌극한과 우극한이 같다
인데 밑에도 잘 설명해주셨지만 극한식의 좌극한=f(x)의 좌미계+우미계,
우극한=f(x)의 좌미계+우미계
가 나와서 저 식에서 좌미계랑 우미계는 서로 달라도 본질적으로 극한의 좌극한과 우극한이 같은거에요
좌미계를 a, 우미계를 b라고 하면 a=/=b이지만 극한의 좌극한(a+b)=우극한(a+b) 인거죠
감사합니다 너무
정말 염치없는 말씀이지만 그래프로
이해할 수 있을까요?ㅠㅠ
감이 올락말락 하네요
지금 사진을 찍을수가 없어서 이번주 토요일에 다시 와서 봐드려도 될까요??
텍스트보다는 종이에 쓰는게 확실히 이해가 더 잘 될거 같긴 해서요!
정말로 감사합니다ㅠ
아 그렇다면 극한값이 곧 미분계수 인건가요
저 식에서만 본다면 극한값이 결국 미분계수의 합인거죠!
질문 투하에도 자세한 답변 감사합니다
그럼 마지막으로 질문이 있는데
ㄴ의 식은 좌미계와 우미계는 존재하나
미분계수는 없는 극한의 식인거죠?
식모양은 미분계수와 유사하게 생길뿐이고

그쵸그쵸 !저 극한식이랑 미분계수는 다른 식인거고
f(x)는 x=1에서 미분계수는 존재하지 않으나 극한값은 존재하는거 맞아요
이해 잘 하셨네요ㅋㅋㅋㅋ
고마워요 크게 배웁니다
혹시 수학성적이 어떻게 되는지 실례가 안되면 여쭐수있을까요

https://orbi.kr/00072959704뭐 이외에도 걍 제 글 모아보기 보다보면 수학 얘기 많이 해서...
솔직히 아직 고정100 수준은 아니라 언제 터질지 몰라서 좀 불안하긴 해여
저건 좌우미계 평균
처음 들어보는 말인데
좌우미계 평균이 뭐죠
미계의 평균?
좌미분계수와 우미분계수의 평균이요
그 평균이 뜻하는게 뭔질 모르겠습니다;;
잘못 쓰신듯요
저 극한식의 분모가 2h면 평균이 맞는 말인데
저 극한식이 분모가 h니까 좌우미계 합이라 해야함
아 그러네요 ㅋㅋ
개념에 혼동이 있으신거같은데 좌우미분계수가 달라서 성립이 안 되는건 '미분가능성'이고요 저 식은 미분가능성과 아무런 관련이 없습니다
간단하게 생각해서 2번은 미분계수의 정의가 아니기 때문에
그냥 f(x)=lx-1l에 1+h랑 1-h 대입해서 극한 계산하면...
미분계수는 하나의 정점과 하나의 동점이 있어야 합니다.
동점이 극한 처리를 통해 정점을 향해 무한히 다가갈 때, 동점과 정점의 기울기 = 동점과 정점의 기울기의 극한을 '정점에서의 접선의 기울기'로 볼 수 있고, 때문에 우리가 흔하게 알고 있는 미분계수의 정의로 세우는 식이 등장할 수 있습니다.
허나 해당 보기를 보시면, f(1+h) - f(1-h) / h =2 x { f(1+h) - f(1-h) / (1 +h) - (1 -h) } 로 고칠 수 있고, 고친 식을 보시면 정점 하나와 동점 하나의 기울기의 극한이 아닌, 동점 두 개의 기울기의 극한을 제시하고 있습니다. 즉 해당 식은 미분계수의 정의가 아닌 단순한 기울기의 극한으로 이해하셔야하며, h->0+로 갈 때나 h->0-로 갈 때 모두 동점 두 개끼리의 기울기의 극한은 0으로 수렴합니다( x축과 평행한 접선 느낌).
때문에 ㄴ 보기는 잘못되었습니다
그렇다면 저 식의 기울기는 거의 x축 모양에 가깝게 형성되어있겠군요
거의가 아니라 그냥 저 식 자체가 항등적으로 0입니다
미분계수의 정의를 다시 봐야 할 듯
저 케이스는 x=1에서 미분계수가 존재하지 않지만 분자가 모든 h!=1에 대해 항상 0이기 때문에 극한값이 0으로 존재하는 거고,
애초에 쟨 미분계수가 아닙니다