미분계수의 정의 질문 있어요
게시글 주소: https://orbi.kr/00072998843
ㄴ이 참이 아닌이유가 뭔가요?
강의를 보아도 이해가 안가네요
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
내가손꼭붓자바줄게
-
한덕수 대통령 권한대행 국무총리가 4월 18일 정부서울청사에서 열린 국무회의에...
-
다들 나보고 바로 알아버리네 하.
-
계속 하다간 진짜 목숨이 위험해질거 같아서 2개월 반의 고시원 생활을 끝내고 집으로...
-
슬슬 이것도 궁금함
-
늦게들어가니까 대치 실패
-
저희 학교는 일단 ㅈ반고 입니다. 1점대 초반이라도 sky는 힘듭니다. 내신 절라...
-
ㅈㄱㄴ
-
5월인데 7
아직 언매 노베다 잣댓다
-
담주부터 시작할 생각인데 하루에 어느정도 투자해야해여? ㅠㅅㅠ 임정환 선생님...
-
목표 적고 가보자구 11
나도 해보고 싶었어...ㅎ
-
뒷북이긴한데 성적표 오늘 받아서 평가좀 부탁드립니다 연세대 목표입니다 가능할까요?
-
ㅈㄱㄴ
-
코돈 문제퀄 괜찮나요 ??
-
세 번째 곡은 이창섭 - 천상연 입니다. 세 번째 게임에 참여해주신 분들께...
-
월급은 부총리만큼만 받는대요.
-
오늘 부모님도 다 쉬셔서 같이 시간 보내느라 쉬어갑니다
-
이주호 권한대행을 보네
-
생명이 도저히 성적이 안올라서 세지나 한지로 바꿀 예정입니다. 생명은 39~44점...
-
설의 추합 성공 0
Vs 대통령 추추추합 성공하기
-
지엔장 기저스바제스 대체 이 문제는 뭐어냐 자꾸...뇌가 달아오르고 있잖아...!...
-
쪽지할사람 1
주세용
-
이건 뭐임 1
ㅋㅋㅋㅋ
-
추천해주세여 원래 맨날 티렉스 먹는데 다른 거 먹어보고 시픔
-
킬캠미적30번 9
이거 원큐에 풀어내신분들 계신가요… 문제보고 어떤 사고?하셨는지 궁금해요
-
그냥 n제 양치기가 답인가요 평가원 기준으론 시간 거의 다 쓰고 사설은 30번 한...
-
아 여기가 음지인가
-
아직 수열의 극한 밖에 안풀어보긴 했는데 어렵지만 얻어갈거 많은 듯합니다
-
Everyday Grow, and Glow “매일 성장하며 빛날 당신” 안녕하세요,...
-
쟨 뭐하는거지 바로차단
-
이주호 3
오...
-
실버컨트롤 1
야간비행 종료
-
얘까지 턴이 온다고?
-
이제 퇴근했네 10
자살
-
이대로 계속 가면 제 차례도 올 것 같아요
-
ㄷㄷ 3
-
ㅈㄱㄴ
-
최상목 경제부총리, 사의 표명
-
ㄹㅈㄷ네 ㅋㅋㅋㅋㅋㅋ
-
안녕하세요 6
친해지고 싶어요ㅜ
-
안녕하세요 6
소고기호빵입니다
-
일요일날 수1 수업 들을거생각하면너무기쁘네
-
오늘 일이 좀 많아서 밖에 오래 있었네요 슬슬 6평까지 달려보겠습니다 다들 화이팅입니다
-
안녕하세요 4
오랜만이요
-
쌤이 폐급이라 답지 안나눠주심 -> 애들끼리 논쟁중
-
짐작이 감 보통 질문 요구사항 ㅈㄴ 많거나 예민하면 절대 내 답 답변도 안해주고 ㅈㄴ 오래씹음
-
허허허허허 다음주에 월급이다
-
궁금쓰
미분계수의 정의가 아니니까요
저걸 쪼개서 미분계수의 정의로 바꿔보세여
0으로 수렴함
평균변화율의 극한
그냥 미분 생각하지 말고
좌우극한 나눠서 극한으로 보세요
정리하면
준식=좌미계+우미계
여서 -1+1=0으로 수렴해요
그렇다면 1이 아닌 2나 다른숫자로 수렴할경우면
값이 존재하지 않겠군요
아니죠
준식의 우극한과 좌극한이 모두 (좌미계+우미계)로 같은 값으로 나오는거이기 때문에
그 값이 1이던 2던 모두 존재하는거에요
극한값 존재라는건
결국 좌극한=우극한이란것만 만족하면 되는거니까요
아 뭔가 혼란스럽네요
절댓값이 붙은 미분계수는 성립할 수 없다고 알고 있는데
이건 그거와 무슨 차이점이 있는건지 알수 있을까요
오히려 좌우미계가 절댓값에 의해 달라져서 성립불가라고 알고있거든요
절댓값이 붙어있던 아니던
우선 주어진 극한값을 "해석"하는게 우선입니다
해석을 좌미계+우미계로 잘 했다면 그때 f(x)가 뭔지 신경써야하는거고
f(x)가 절댓값이 있다 하더라도 구해야 하는 값인 우미계와 좌미계 모두 존재하기 때문에
절댓값과는 무관하게 존재하는거에요
그냥 "1에서의 미분계수"가 구하는 값이었다면 존재하지 않는게 맞지만
"우"미분계수랑 "좌"미분계수를 구해야 하는건데 둘 다 존재하고 그 합은 일정하기 때문에 주어진 극한이 존재하는거에요
좌미계와 우미계의 값이 있다는 이해했습니다
다만 저 값들은 다르니 저 식의 저 식을 아우르는 극한값 전체는 없는거 아닌가요
답답하실거 충분히 이해갑니다ㅠ
뭐 저도 처음 배웠을 땐 헷갈렸으니까..
처음부터 천천히 다시 보시면 극한이 존재한다-->그 극한식의 좌극한과 우극한이 같다
인데 밑에도 잘 설명해주셨지만 극한식의 좌극한=f(x)의 좌미계+우미계,
우극한=f(x)의 좌미계+우미계
가 나와서 저 식에서 좌미계랑 우미계는 서로 달라도 본질적으로 극한의 좌극한과 우극한이 같은거에요
좌미계를 a, 우미계를 b라고 하면 a=/=b이지만 극한의 좌극한(a+b)=우극한(a+b) 인거죠
감사합니다 너무
정말 염치없는 말씀이지만 그래프로
이해할 수 있을까요?ㅠㅠ
감이 올락말락 하네요
지금 사진을 찍을수가 없어서 이번주 토요일에 다시 와서 봐드려도 될까요??
텍스트보다는 종이에 쓰는게 확실히 이해가 더 잘 될거 같긴 해서요!
정말로 감사합니다ㅠ
아 그렇다면 극한값이 곧 미분계수 인건가요
저 식에서만 본다면 극한값이 결국 미분계수의 합인거죠!
질문 투하에도 자세한 답변 감사합니다
그럼 마지막으로 질문이 있는데
ㄴ의 식은 좌미계와 우미계는 존재하나
미분계수는 없는 극한의 식인거죠?
식모양은 미분계수와 유사하게 생길뿐이고

그쵸그쵸 !저 극한식이랑 미분계수는 다른 식인거고
f(x)는 x=1에서 미분계수는 존재하지 않으나 극한값은 존재하는거 맞아요
이해 잘 하셨네요ㅋㅋㅋㅋ
고마워요 크게 배웁니다
혹시 수학성적이 어떻게 되는지 실례가 안되면 여쭐수있을까요

https://orbi.kr/00072959704뭐 이외에도 걍 제 글 모아보기 보다보면 수학 얘기 많이 해서...
솔직히 아직 고정100 수준은 아니라 언제 터질지 몰라서 좀 불안하긴 해여
저건 좌우미계 평균
처음 들어보는 말인데
좌우미계 평균이 뭐죠
미계의 평균?
좌미분계수와 우미분계수의 평균이요
그 평균이 뜻하는게 뭔질 모르겠습니다;;
잘못 쓰신듯요
저 극한식의 분모가 2h면 평균이 맞는 말인데
저 극한식이 분모가 h니까 좌우미계 합이라 해야함
아 그러네요 ㅋㅋ
개념에 혼동이 있으신거같은데 좌우미분계수가 달라서 성립이 안 되는건 '미분가능성'이고요 저 식은 미분가능성과 아무런 관련이 없습니다
간단하게 생각해서 2번은 미분계수의 정의가 아니기 때문에
그냥 f(x)=lx-1l에 1+h랑 1-h 대입해서 극한 계산하면...
미분계수는 하나의 정점과 하나의 동점이 있어야 합니다.
동점이 극한 처리를 통해 정점을 향해 무한히 다가갈 때, 동점과 정점의 기울기 = 동점과 정점의 기울기의 극한을 '정점에서의 접선의 기울기'로 볼 수 있고, 때문에 우리가 흔하게 알고 있는 미분계수의 정의로 세우는 식이 등장할 수 있습니다.
허나 해당 보기를 보시면, f(1+h) - f(1-h) / h =2 x { f(1+h) - f(1-h) / (1 +h) - (1 -h) } 로 고칠 수 있고, 고친 식을 보시면 정점 하나와 동점 하나의 기울기의 극한이 아닌, 동점 두 개의 기울기의 극한을 제시하고 있습니다. 즉 해당 식은 미분계수의 정의가 아닌 단순한 기울기의 극한으로 이해하셔야하며, h->0+로 갈 때나 h->0-로 갈 때 모두 동점 두 개끼리의 기울기의 극한은 0으로 수렴합니다( x축과 평행한 접선 느낌).
때문에 ㄴ 보기는 잘못되었습니다
그렇다면 저 식의 기울기는 거의 x축 모양에 가깝게 형성되어있겠군요
거의가 아니라 그냥 저 식 자체가 항등적으로 0입니다
미분계수의 정의를 다시 봐야 할 듯
저 케이스는 x=1에서 미분계수가 존재하지 않지만 분자가 모든 h!=1에 대해 항상 0이기 때문에 극한값이 0으로 존재하는 거고,
애초에 쟨 미분계수가 아닙니다